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ABSTRACT

In predicting the aerodynamic characteristics of airfoils operating at low

Reynolds numbers,it is often important to accountfor the effectsof laminar (tran-

sitional) separationbubbles. Previous approachesto the modelling of this viscous

phenomenonrangefrom fast but sometimesunreliable empirical correlations for the

length of the bubble and the associatedincreasein momentum thickness, to more

accurate but significantly slowerdisplacement-thicknessiteration methods employ-

ing inverseboundary-layer formulations in the separatedregions. Sincethe penalty

in computational time associatedwith the more general methods is unacceptable

for airfoil designapplications, useof an accurateyet computationally efficient model

is highly desirable. To this end, a semi-empiricalbubble model has been developed

and incorporated into the Eppler and Somersairfoil design and analysisprogram.

The generality and the efficiency have been achievedby successfullyapproximat-

ing the local viscous/inviscid interaction, the transition location, and the turbulent

reattachment processwithin the framework of an integral boundary-layer method.
---%

Comparisons of th%i_redicted aerodynamic characteristics with experimental mea-

surements for several airfoils show excellent and consistent agreement for Reynolds

numbers from 2,000,000 down to 100,000.
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Chapter I

INTRODUCTION

This thesis isconcernedwith a particular aspectof the overall task of estimating

the aerodynamic performanceof airfoils. Before a more precise statement of the

problem can be made, it is necessaryto describeits physical setting and to define

some important terms.

Background and Definitions

The prediction of the aerodynamic performance of a two-dimensional airfoil

can be obtained by letting the airfoil remain stationary while analyzing the flow of

air over it. The speeds of interest here are usually sufficiently smaller than the local

speed of sound of the air to justify an assumption of incompressible flow.

As the Reynolds number, defined as

R-
U_ c

p,
(1.1)

falls below approximately R = 4 x l0 s, the laminar boundary layer may run out

of momentum before transition on the surface occurs. Since the momentum of the

outer flow cannot readily reach the stagnant fluid near the surface, the imposed ad-

verse pressure gradient can only be balanced by a negative velocity of the flow. That

is, the boundary layer separates leaving a thin region of reversed flow underneath

it. In such cases, transition occurs in the free shear layer downstream of laminar

separation and is usually followed by reattachment as a turbulent boundary layer,

such that a small amount of fluid remains trapped between the shear layer and the

surface. This pocket of fluid is called a laminar separation bubble.

Laminar separation bubbles on airfoils are observed over a large Reynolds num-

ber range. Due to the ability of the turbulent shear layer to reattach to the surface
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of a streamlined shape such as an airfoil, the critical Reynolds number is approx-

imately two orders of magnitude smaller than that at which laminar separation is

first observed. In the flow over a circular cylinder, a large jump in drag coet_cient is

observed as the Reynolds number is decreased approximately below 22 = 300,000.

At this value, in fact, the bubble cannot reattach immediately downstream of tran-

sition and massive laminar separation results. For airfoils, the critical Reynolds

number depends on thickness and angle of attack but is usually between/{ = 40,000

and 200,000. Unlike the case of a cylinder, a bubble that has burst due to a de-

crease in Reynolds number will usually reattach upstream of the trailing edge. In

this state, it is called a long bubble and it causes a large decrease in lift and a

large increase in drag. Bursting may also occur at high Reynolds numbers near the

leading edge, downstream of the suction peak present on the upper surface at high

angles of attack. The inability of the shear layer to reattach is ascribed in this case

to the extreme values of the adverse pressure gradient.

In the first forty years since laminar separation bubbles were first observed by

Melville Jones in 1933, leading-edge bubbles at high Reynolds numbers received

most of the attention since their bursting is generally believed to be responsible for

abrupt stall. In more recent years, the development of small remotely controlled

aircraft (Remotely Piloted Vehicles) has shifted the Reynolds number range of in-

terest to values below one million. In this range, due to the delayed transition,

bubbles may form near the told-chord causing significant increases in profile drag,

depending on their length and thickness. The shift from leading-edge to mid-chord

bubbles has been a fortunate one. Since the latter are usually an order of magni-

tude larger (although they appear to be very similar in internal flow structure), the

greater ease of measuring pressure or flow variables has made it possible to make

great progress toward full understanding of this phenomenon. This understanding,



2-2

however, is still not sufficient to establish a reliable bursting criterion.

Whether bursting occurs due to a decrease in Reynolds number or to an in-

crease in pressure gradient, the resulting flowfield is characterized by a global strong

interaction between the viscous and the inviscid regions and section properties can-

not be obtained by means of simple approximations. Away from these limiting

conditions, however, the viscous/inviscid interaction induced by the bubble is lim-

ited to its immediate vicinity, especially at low to moderate lift coefficients. Such

bubbles have traditionally been called "short," although it may be more accurate

to refer to them as "weakly interacting."

Problem Statement

The purpose of this study is to develop a model for weakly interacting laminar

separation bubbles developing in the incompressible, two dimensional, viscous flow

over airfoils that can accurately account for the increase in airfoil profile drag that

accompanies them.

From the point of view of boundary-layer theory, the distinction between weak

and strong viscous/inviscid interaction is made on the basis of the magnitude of

the modification to the inviseid pressure distribution by the viscous flow. A weakly

interacting bubble, therefore, is such only insofar as its effect on the global invis-

cid pressure distribution is concerned but is still characterized by a strong local

interaction. In addition, when first confronted with the description of a region of

recirculating flow between a separation and a reattachment point, it seems natural

to assume that the flowfield is elliptic and that the boundary-layer approximations

are not applicable. Given the very slow speeds of the reeirculating flow and the

thinness of the bubble, however, the boundary-layer approximations are usually as-

sumed to be valid everywhere. Rather than within the recirculating flow, in fact,

important signals are communicated upstream through the interaction with the
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outer flow. A parabolic boundary-layer method is therefore adequate for analyzing

laminar separation bubbles as long as it is coupled to the outer elliptic flow through

at least a local interaction algorithm. This has been employed in the present model

and, to maximize the computational efficiency, the boundary-layer development is

calculated with an integral method.

In order to determine the increase in drag caused by a bubble, the shear layer

development must be calculated through the different regions of the bubble as shown

in Fig. 1-1. The formation of a bubble is initiated at point 8, shown in the figure,

by the laminar boundary layer separating from the airfoil surface. Using integral

boundary-layer methods, this point can be determined with sufficient accuracy for

airfoil design work. Once separated, the free shear layer development must be

tracked and the transition from laminar to turbulent flow, which occurs near the

point T, predicted. As shown in the figure, the separation bubble causes a plateau

to form in the velocity distribution between the points corresponding to laminar sep-

aration and the end of the transition region. From this point, the turbulent part of

the bubble encompasses a pressure recovery region which leads to the reattaehment

of the turbulent shear layer at point T¢. As an additional pressure recovery always

occurs downstream of a reattachment point [Green, 1966], the velocity distribution

corresponding to the highly non-equilibrium, relaxing boundary layer downstream

of reattachment usually "undershoots" the inviscid distribution. Eventually, the

turbulent boundary layer reaches its fully developed state and the undershoot re-

gion merges smoothly from below with the inviscid velocity distribution. Clearly it

is possible, especially at low Reynolds numbers, that the turbulent boundary layer

does not reach equilibrium before the trailing edge of the airfoil.

Rather than describing the effect of the bubble on the pressure distribution,

it is more informative to explain why such an effect is observed. This can be done
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by invoking two conservation laws, the conservation of mechanical energy and the

conservation of linear momentum. In an inviscid incompressible flow, the conserva-

tion of mechanical energy is simply Bernoulli's equation. While inside the boundary

layer the total pressure is continually and unevenly being dissipated by the shear

stresses, static pressure rise is still achieved by trading for it the available kinetic

energy inside the boundary layer. Once the boundary layer runs out of kinetic

energy shortly downstream of separation, since conservation of energy is a scalar

law and energy is a positive-definite quantity, no more pressure can be recovered.

Conservation of linear momentum, on the other hand, is a vector law such that,

once the boundary layer runs out of momentum, it has no diificulty allowing it to

become negative to balance the imposed inviscid adverse pressure gradient. As soon

as this happens, however, the presence of the reverse flow, felt by the outer flow as

a modification of the airfoil surface, effectively decreases this same inviscid pressure

gradient. As the pressure gradient decreases, it, in turn, induces a lesser growth of

reverse flow. In the limit, a bounded growth of reverse flow at constant pressure

results. This new distribution of static pressure matches what the energy equation

allows.

While the momentum present in a laminar boundary layer is strictly dependent

on what is "handed down" by the upstream development, the efficient cross-stream

transfer of momentum by the Reynolds stresses that appear downstream of transi-

tion in the bubble brings the momentum of the outer flow near the wall. This allows

the reverse flow to be accelerated and near-inviscid pressure to be recovered by the

reattachment point. This loss of outer flow momentum is observed, by definition,

as a rapid boundary-layer growth in the turbulent part of the bubble. Within the

context of an ifltegral method, the momentum lost by the flow results in the large

growth in momentum thickness measured in this part of the bubble and can result
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Previous Models

Previous attempts at modelling this flow phenomenon range from very crude

empirical correlations for the transition length from laminar separation and subse-

quent reattachment behavior to full simulations of the Reynolds-averaged turbulent

Navier-Stokes equations. This variety of approaches is partly caused by the long

time-span over which this problem has been studied. In the early years, several

empirical models or empirical correlations for particular bubble characteristics were

proposed. Von Doenhoff [1938] assumed that the dividing streamline is straight

and tangent to the airfoil surface at the separation point. He determined the tran-

sition location by assuming a constant transition Reynolds number, formed with

the velocity at separation and the distance between separation and transition along

the dividing streamline. The distance to reattaehment is then determined using

a constant spreading angle of the turbulent shear layer of 15 ° measured from the

direction of the dividing streamline. Interestingly, the present model resembles this

initial configuration more than many others that have followed in the next fifty

years. Crabtree [1957] proposed a coefficient of pressure rise in the turbulent part

of the bubble equal to

- ;r (1.2)

This coefficient has been used mainly to monitor bubble bursting, which would

happen for values of cr > 0.35. These early results, measurements, and hypotheses

are discussed extensively in review papers by Ward [1963] and Tani [1964].

Gaster [1967] investigated bubble bursting with decreasing Reynolds number.

He characterizes the bubble by the values of the momentum thickness Reynolds
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number at separation,

(R6.)s =

and a pressure gradient parameter,

Us( 2)s
LI

(1.3)

p_ Au (i.4)
/ks

where the velocity gradient in Gaster's parameter refers to the mean inviscid gradi-

ent between the separation and reattachment points. With varying conditions, for

instance decreasing Reynolds number, a locus of points corresponding to the bubble

evolution can be traced on a plot whose axes measure variations in these two param-

eters. He found that bursting would occur always along the same line on this plot.

Although bursting is not modelled in this study, these same two parameters play

a fundamental role in the present model. Horton [1967] proposed a semi-empirical

model where the governing integral boundary-layer equations are coarsely approxi-

mated inside the bubble. This model will be discussed in more detail in Chapter 2.

Van Ingen [1975] and Van Ingen et al. [1980, 1986] studied the bubble problem for

many years. Their model is distinguished by a good approximation to the pressure

distribution in the bubble region and of the transition process. The shear layer

growth along the bubble, however, is not adequately approximated. These methods

are usually not sufficiently accurate or general, their main shortcoming being an

inability to account for the local ellipticity of the bubble flow field.

Since approximately 1970, advances in computer technology have prompted a

number of more detailed viscous simulations by finite-difference methods. Briley

and McDonald [1975] developed a local Navier-Stokes solution for the bubble region

which is matched with the steady boundary-layer equations upstream and down-

stream of the bubble and with the inviscid outer flow. Their predictions match

Gault's [1955] measurements to an acceptable degree of accuracy but comparisons
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with airfoil drag data are not given. Davis and Carter [1984] developed an in-

teracting method based on a perturbation of the outer inviscid flow by a source

distribution representing the bubble and a finite-difference boundary-layer method

for the bubble flowfield and boundary layer. By properly accounting for the local

flow direction, their method is able to resolve rather interesting details about the

flow inside the bubble. For instance, there appear to be three different vortices:

one in the laminar part, one in the turbulent part, and one in between, next to the

wall and rotating in the opposite sense. While the bubble characteristics predicted

by this method compare well with the experimental data presented in their report

[Gault, 1955], low Reynolds number cases and the effect of the bubble on airfoil

drag are not considered. Cebeci and Schimke [1983], Cebeci [1989], and Kwon and

Pletcher [1979] follow similar formulations, where a finite-difference boundary-layer

method interacts with the outer flow. These methods are limited by the general-

ity of the turbulence model they employ and, for the present time, are much too

inefficient eomputationally to be used routinely.

Over the same period of time, approaches that can be considered of an in-

termediate degree of complexity have flourished: interactive methods that use an

integral formulation for the boundary-layer development. Crimi and Reeves [1976],

Drela and Giles [1987], Drela [1989], and Gleyzes et al. [1983] are of this type. The

advantage of such methods is that they combine a relative computational efficiency

with a potential for sufficient accuracy and generality.

A Model for Airfoil Design

In the Reynolds number range over which laminar separation bubbles form,

40,000 < R < 4,000,000, they assume many different sizes and thicknesses, each

tied to a particular airfoil geometry or to particular conditions on different airfoils.

In fact, many different types of aircraft with different mission requirements and

=
F_
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design constraints fly in this range. It often happens that particular airplane design

goals conflict with flow conditions that would minimize the detrimental effects of

bubbles. For instance, the low-drag requirement of sailplanes necessitates extensive

use of natural laminar flow technology. The favorable pressure distribution to 50

or 60% of the chord generally employed on laminar flow airfoils necessarily leads

to a steep pressure recovery over their aft-portion. The high performance of such

airfoils hinges on forcing transition before the boundary layer encounters the ad-

verse pressure gradient since the higher energy turbulent boundary layer is more

able to recover the near-freestream trailing-edge pressure without separating. This

is achieved by means of a region of moderately adverse pressure gradient, a "tran-

sition ramp," at the end of the favorable pressure gradient region. As the Reynolds

number decreases, the transition ramp becomes insufficient to destabilize the lam-

inar boundary layer into transition before the beginning of the recovery such that

a thick, high-drag bubble forms. The trade-off, therefore, is between the advan-

tages of natural laminar flow at cruise speeds and the disadvantages of the bubble

in thermalling flight. The higher ct required for thermalling would at first sight

seem to help the designer in avoiding the bubble. In fact, higher ct's are obtained

at higher angles of attack such that the adverse pressure gradient starts near the

leading edge. The destabilizing effect of this type of pressure distribution is offset,

however, by the lower Reynolds numbers characteristic of this flight regime. Since

small changes in the pressure distribution can effect large changes in bubble struc-

ture and, therefore, in drag, this "fine-tuning" engineering problem can be resolved

only if the effects of the bubble can be accurately calculated under different types

of pressure distributions at different Reynolds numbers.

One way of accounting for laminar separation bubbles in airfoil design is the

bubble analog used in the design and analysis program of Eppler and Somers [1980].
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The design method of this program uses an inverse conformal mapping method that

allows great freedom and flexibility in specifying the characteristics of the airfoil

pressure distribution to achieve the desired performance. The aerodynamic charac-

teristics are calculated by an integral boundary-layer method driven by the inviscid

velocity distribution. Close monitoring of the boundary-layer development is ac-

tively used in the design process to aid in the modification of the inviscid velocity

distribution to achieve the desired transition and separation behavior. In this pro-

gram, the designer is warned about the presence of separation bubbles which might

unacceptably increase the drag over that which is predicted assuming that transi-

tion occurs at laminar separation. Although this approach has proven very useful in

designing airfoils for low Reynolds number applications, it would be advantageous

to have predictions of section properties which more fully account for the presence of

laminar separation bubbles provided this can be done without significantly increas-

ing computational requirements. In fact, while above R = 500,000 this criterion

can be used effectively to design airfoils with short bubbles that do not increase

the drag of the airfoil, as the Reynolds number decreases it becomes increasingly

difficult to eIiminate the detrimental drag increases [Mueller, 1984].

In order to design low Reynolds number airfoils more effectively, a new method

of modelling the bubble has been developed in this thesis. It combines the speed of

the empirical and semi-empirical approaches of the early years with the accuracy of

the more recent interactive methods. This approach rests on the hypothesis that it

should be possible to model a local phenomenon such as a laminar separation bubble

through local rather than global information. This hypothesis has been confirmed.

While the boundary-layer development upstream of laminar separation must in some

cases be taken into account in order to predict accurately the transition location

inside the bubble, all other characteristics of the bubble flowfield have been found
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to depend on a few local scaling parameters that will be discussed in the following

chapters. Furthermore, by accounting for the interaction through a local iteration,

a uniformly accurate laminar separation bubble model has been developed. This

model has been incorporated into the Eppler and Somers program. Although it is

unable to account for strong interactions such as the large reduction in the suction

peak sometimes caused by leading-edge bubbles, it is able to predict the increase

in drag and the local alteration of the airfoil inviscid pressure distribution that are

caused by bubbles occurring in the operational range which is of most interest.

In Chapter 2, the reasoning leading to the independent parameters that control

the bubble is retraced. In Chapter 3, the calculation of the laminar part of the

bubble is described in detail. In Chapter 4, possible approaches to the modelling

of transition are discussed together with the method employed here. In Chapter 5,

the calculation of the turbulent part of the bubble is described in detail. Several

empirical functions necessary to model this most complicated part of the airfoil

flowfield are proposed. In Chapter 6, several airfoils are analyzed and the results

are compared to experimental data. In Chapter 7, the range of validity of the present

model is assessed, important results are summarized, and specific suggestions are

given toward enlarging the empirical data base necessary to confirm the present

formulation.
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In this chapter, the approachfollowed in developingthe present laminar sepa-

ration bubble model is justified. It is then shownhow the shortcomingsof previous

similar models can be remedied by letting the bubble flowfield depend on three local

parameters.

Modelling Philosophy

The development of a model of a physical phenomenon entails a three-step pro-

cess that is usually iterative rather than sequential: (1) identifying which dependent

variables need to be modelled, (2) identifying which independent variables best char-

acterize the conditions on which the phenomenon depends, and (3) determining the

correct relationships between the two. In the case of incompressible fluid flow, (1)

is comprised by the velocity and pressure field, (2) by spatial variables, time, and

boundary conditions, and (3) by a differential relationship, the Navier-Stokes equa-

tions, which embodies pointwise mass and momentum conservation. This model can

be integrated numerically to obtain the dependence of the velocity and pressure on

varying geometry and flow conditions for the laminar separation bubble problem as

well as for thousands of other flowfields.

Motivated by computational eKiciency requirements, methods of varying de-

grees of approximation have been developed. As soon as approximations are intro-

duced, the modelling challenge changes in nature since assumptions have to be made

about what does and what does not need to be approximated and these assumptions

must be supported either by analytical arguments or by experimental evidence. For

instance, viscous/inviscid interaction methods rely on the boundary-layer assump-
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tions and on the extensiveanalytical and experimentalevidencethat supports them.

There are two important consequences of this type of approximation: (1) the num-

ber and types of flowfields that can be analyzed with interactive boundary-layer

methods is severely restricted from what could be done by the original equations;

(2) by integrating the inviscid or outer problem, the independent conditions are

shifted from geometry and spatial variables to flow variables. The final solution is

arrived at by allowing the outer and boundary-layer flows to interchange their roles

as dependent and independent processes at each iteration, with the relationship

between them given by the numerical integration of either Laplace's equation or

the boundary-layer equations. Although the solution information is limited to the

airfoil surface, approximating high Reynolds number viscous flows in this way adds

valuable integral insight about the solution over and above the knowledge that it is

governed, pointwi_e, by the Navier-Stokes equations.

If the computational requirements are even more stringent, as in the present

casc, then a more drastic approximation of the physical phenomenon is necessary.

The resulting model will be even more limited in applicability and it will have to

rely on relationships that are further removed from the original differential pointwise

balance and closer to the integrated solutions. In essence, the limit to this approx-

imation process is simply an explicit solution to the original mathematical model

of the phenomenon, necessarily obtained at the expense of its generality. That is,

if such a solution is not possible at a particular level of approximation, the model

is simplified further. The advantages of speed and insight brought by an explicit

solution, however, are off-set by a model that may have become too simplistic and

restrictive in applicability. In this thesis, the approximation is brought one step be-

yond the viscods/inviscid interaction approach to a semi-empirical method. In this

case, this approach has proven to be a successful compromise between speed, gener-
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ality, and understanding. In order to minimize the reliance on empirical "guesses,"

the governing integral boundary-layer equations are enforced in the bubble and are

complemented with a set of simple relationships that capture the essential features

of the bubble allowing the prediction of its characteristics and of its effects in gen-

eral. This formulation was arrived at by starting with the simpler models and

adding complexity only after establishing that it was absolutely necessary.

Early Results

In the course of the research reported here, efforts to develop a method able to

predict the effects of a laminar separation bubble which interacts weakly with the

inviscid flow began with the incorporation of the classical empirical model of Horton

[1967], modified according to the suggestions of Roberts [1980] and Schmidt and

Mueller [1989], into the Eppler and Somers program. Because they are formulated

in terms of integral boundary-layer properties, bubble models such as these are well

suited to the integral boundary-layer analysis method employed by Eppler. This

method employs two coupled governing differential equations, the momentum and

energy integral equations,

dh _ (H.+ 2) dV (2.1)
ds 2 U ds

d53 53 dU

ds - CD -- 3-_ d--_ (2.2)

together with appropriate closure relations for c$, CD, and H12 [Eppler, 1963],

given in the Appendix. Contrary to simpler, one-equation methods such as that

of Thwaites [1949], in two-equation methods the shape factor (H32, in this case) is

obtained directly from the governing equations and is therefore independent of the

local pressure gradient parameter. This allows such methods to analyze accurately

the non-similar boundary-layer developments characteristic of aerodynamic flows
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provided that the assumed family of velocity profiles approximates the actual flow

reasonably well.

The empirical models noted above do not take advantage of the accuracy af-

forded by a two-equation method to calculate the development of the shear layer

along the bubble. Instead, they obtain the growth of 52 along the bubble by means

of rather coarse approximations of these equations. Thus, assuming a constant-

pressure plateau between separation and transition and negligible skin friction

brought by the near-stagnant fluid in this region leads to

(52)7- = (52)s (2.3)

from the momentum integral equation. Based on low Reynolds number measure-

ments [Schmidt and Mueller 1986; O'Meara, 1986; Brendel, 1988], Schmidt and

Mueller [1989] suggest using, instead,

(62) 
_ (62)s _/1 + (1"1969)2(gl/c) (2.4)c o

from the similarity solution for the laminar free shear Iayer. The value of momen-

tum thickness growth predicted by this equation, which was proposed earlier by

Russell [1978], increases with decreasing Reynolds number. In order to evaluate

this equation, the length of the laminar part of the bubble, given by correlations to

be discussed in Chapter 4, must be known.

From the transition point, the growth of 82 in the turbulent part of the bub-

ble is approximated by simplifying the momentum and energy integral equations.

Combining these two equations leads to Truckenbrodt's shape parameter equation,

dH32 (H12 " 62 dU e fH3262 G - - I)H 2F-a-7+ 2

As discussed by Horton [1967], it appears from experimental data that

=0
ds Ira

(2.5)

(2.6)

v
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Using this result along with that of vanishing skin friction at a point of reat-

tachment, Horton was able to reduce Eq. (2.5) to

U--d-s-s _ Ha2(H12- 1) n

The assumption of a universal reattachment velocity profile and a constant CD in the

turbulent part of the bubble leads to a constant value for A_. Assuming constant

Up and H32 and a linear pressure recovery from transition to reattaehment, one

can integrate the energy integral equation to obtain the momentum thickness at

reattachment,

(5:)n =(52)z \U--_n) +C2 (4---'_32)(1+ U_--_-) 1+ \_-_-) j

Then, eliminating (52)_ between Eqs. (2.7) and (2.8) one obtains

£2 = (2.9)
Gj?_

In order to implement this result numerically, Us is decreased in small increments

from the value of Uz'. At each step, g2 is calculated and it is checked whether or

not the segment joining 7" to _ intersects the inviscid velocity distribution. When

this happens, (52)_ is calculated from Eq. (2.8) and the turbulent boundary-layer

method is started at are using this value and (Ha2)= = 1.51 for initial conditions.

This type of formulation is inadequate for several reasons. It does not properly

account for the effects of the local viscous/inviscid interaction on the pressure dis-

tribution in the laminar part and therefore cannot accurately calculate the growth

of 52 in this region. It relies on local empirical transition criteria which are un-

able to sense the influence of the upstream boundary-layer development. Also, in

actuality, neither Has nor CD are constant in the turbulent part of the bubble.
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The turbulent recovery distribution can deviate appreciably from a straight line.

Finally, the pressure at the reattachment point can be significantly below or above

the corresponding inviscid value.

In an attempt at better approximating the pressure distribution induced by

the bubble, van Ingen's functions were implemented [Ingen and Boermans, 1986].

In the laminar part use is made of the empirical function

U
- .978 + .022exp(-4.545_ - 2.5_ 2) (2.10)

Us

where

_-ss (2.11)
¢ = (R 2)s(6 )s

which allows for a slight pressure recovery between separation and transition. For

the turbulent part, a Stratford pressure distribution is employed and again it is

assumed that reattachment occurs at the intersection with the inviseid distribution.

Fig. 2-1 shows a comparison between the Horton and Stratford recoveries. The

dashed line is the locus of possible reattachment points as given by Eq. (2.9).

Using the empirical separation bubble model noted, the sensitivity of the

boundary-layer development and drag prediction to various parts of the bubble

was explored. In order to achieve accurate drag polar predictions, it was found

necessary to capture the vanishing of the bubble with increasing adverse pressure

gradient while at a constant chord Reynolds number. It is found that the transition

length for such empirical models responds to variations in chord Reynolds num-

bers but not in pressure gradient. The drag prediction, in turn, is very sensitive

to small variations in the governing parameters, for instance, the pressure level at

the beginning of the turbulent pressure recovery. Thus, although generally capa-

ble of predicting features of the bubble to within thirty percent, empirical bubble

models based only on conditions at separation cannot provide acceptable drag pre-

dictions. Fig. 2-2 shows the aerodynamic characteristics of the Eppler E387 airfoil
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at R = 300,000 obtained with this early version of the bubble model compared to

the original Eppler and Somers prediction and the measurements of McGhee et al.

[1988] taken in the Low Turbulence Pressure Tunnel at the NASA-Langley Research

Center.

Before beginning a discussion of possible alternatives to the above approxima-

tions, two issues indirectly affecting the bubble model should be addressed. Firstly,

due to the presence of the boundary layer, the experimental pressure distribution

does not equal the inviscid one at the same angle of attack but falls inside it, leading

to a smaller lift coeffcient. If a weakly interacting bubble is present, it will modify

the viscous pressure distribution only locally. Using the inviscid pressure distribu-

tion to drive the bubble model, therefore, necessarily leads to a discrepancy between

the predicted and measured results if the same angle of attack is prescribed. This

discrepancy can be eliminated by employing a viscous/inviscid interaction algo-

rithm. While appropriate for analyzing near-stall conditions, methods of this type

are not really necessary at lower lift coeffcients where the design effort is most often

concentrated. In fact, since aerodynamic characteristics are usually compared at

the same ct rather than at the same a, the difference in angle of attack between the

experimental and inviscid lift coefficients poses no obstacles to comparing drag pre-

dictions obtained with the inviscid pressure distribution to the experimental drag

polar. It may be expected that the validity of the present model will decrease for

mid-chord bubbles on highly aft-loaded airfoils and for leading-edge bubbles near

bursting.

Secondly, the turbulent boundary-layer analysis method developed by Eppler

and employed in the program is based on empirical equilibrium relationships be-

tween the integral variables [Eppler, 1963]. While quite appropriate for analyzing

high Reynolds number flows without bubbles, such a method cannot correctly ac-
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count for the relaxing, nonequilibrium turbulent boundary layer downstream of

reattachment, especially at lower Reynolds numbers. The present model, therefore,

makes use of the nonequilibrium turbulent boundary-layer method developed by

Drela [1986]. To provide a comparison between these two boundary-layer meth-

ods, in Figs. 2-3 and 2-4 the Eppler E387 and the NASA NLF(1)-1015 airfoils

are analyzed assuming transition at the laminar separation point using the origi-

nal and Drela's turbulent boundary-layer methods. The turbulent separation point

predicted by Drela is downstream of that predicted by Eppler for the low Reynolds

number case but is equal to it at the higher Reynolds number. The drag coefficient,

however, is consistently higher by 10 to 15 counts.

The Local Independent Parameters Controlling the Bubble

It is stated in Chapter 1 that the present model has confirmed the hypothesis

that it should be possible to model the weakly interactive bubble solely by means of

locM parameters, with the exception of the transition process. Although transition

may be the most important effect, it is not of much help without an accurate

estimation of the bubble flowfield. Thus, the failure of the early empirical models

can be traced not only to their poor modelling of transition but also to their inability

to capture the principal physical processes in the two parts of the bubble. In spite of

this, their reliance on local conditions has not been abandoned in the present model.

Rather, it has been extended to achieve a more detailed prediction of this flowfield.

SpecificMly, the local parameters must be able to characterize three aspects of the

bubble flowfield that have been found to control all other bubble characteristics:

the boundary-layer momentum thickness at separation, the mean inviscid pressure

gradient along the bubble, and the thickness of the bubble at transition. In addition,

the correct lowest-order response of the bubble to these inputs must be identified.

The failure or success of previous approaches to predict the bubble flowfield and its
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effects on airfoil performance can be shown to be directly related to their failure or

success to account properly for these independent and local flow conditions.

The first investigators of the bubble problem recognized that the transition

location plays a fundamentally important role in determining the size of the bubble.

They therefore recognized the need to estimate the degree of instability present in

the boundary layer as it separates from the surface. A very stable boundary layer

at separation, in fact, is likely to be followed by a fairly long bubble, whereas an

unstable one would be associated with a shorter bubble. The Reynolds number

has been universally used as an indicator of how far from turbulence a particular

flowfield is. In addition, as the chord Reynolds number is decreased, the bubble

becomes longer until it bursts at the critical value. It seemed plausible, therefore,

that a good correlating parameter for the stability of the separating boundary-layer

flow could be arrived at by forming a Reynolds number with the value of inviscid

velocity and momentum thickness at laminar separation as characteristic velocity

(R6.)s- us(6 )s (2.12)
/./

and length,

This parameter is certainly useful but, unfortunately, only provides a coarse indica-

tion of the stability of the flow at laminar separation. Another parameter that has

been used extensively in empirical correlations is the value of momentum thickness

at laminar separation nondimensionalized with respect to the airfoil chord. Rather

than a measure of the stability of the separating shear layer, this parameter only

contains information on how much momentum has already been lost by the bound-

ary layer upon reaching the laminar separation point. These criteria lack sensitivity

to the effect of the pressure distribution on transition, namely the effect of the up-

stream boundary-layer development. As will be discussed in Chapter 4, this effect

is well modelled by the e" method of linear stability theory.
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Another effect that needs to be accounted for is the local strong viscous/inviscid

interaction. Since this interaction is a result of the presence of separated flow and

since the amount of separated flow is affected by the severity of the pressure gradient

and by (52)s, it is not surprising that this effect has been found to scale well with

a parameter that incorporates these flow conditions, Gaster's pressure gradient

parameter, given by Eq. (1.4).

It should be mentioned at this point that a recent study [Pauley et al., 1989]

of the laminar separation bubble shows Gaster's parameter to be important in yet

another respect. In this study, the unsteady laminar Navier-Stokes equations are

discretized to calculate the flow through a duct. Although the local Reynolds num-

ber of the flow based on the distance between the entrance of the tunnel and the

laminar separation point is on the order of R = 50,000-300,000, transition to turbu-

lence cannot be accurately computed (computational unsteadiness can occur) due

to the grid resolution and time-step used to keep the computational requirements

within reasonable limits. A suction port on the upper wall of the duct provides

an adverse pressure gradient for the laminar boundary layer developing along the

lower wall.

The value of the parameter P,,_a_ = .24, a modification to Gaster's parameter

with the velocity gradient representing the maximum rather than the average in-

viscid gradient between separation and reattachment, is found to correspond to the

boundary between steady and unsteady reattachment of the laminar shear layer.

This boundary correlates well to Gaster's bursting line such that it separates the

long (steady, P_,,a_ < .24) from the short (unsteady, P,_a_ > .24) bubbles measured

by Gaster. Because of this correlation between the steady and long bubbles and the

unsteady and short bubbles, it is proposed by Pauley et al. that the reattachment

process may be governed by the large-scale laminar pressure field rather than by
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turbulent transfer of momentum. While this cannot be proved or disproved with

certainty, the onset of unsteadiness can be justified in the case of laminar flow. In

fact, as Pm,_ increases, the inviscid gradient and/or the momentum loss at scpa-

ration increases. Thus, a greater momentum transfer is necessary to recover the

inviscid pressure and/or to accelerate the sizable amount of reverse flow. As the

laminar shear layer is not capable of such momentum transfer, reattachment prob-

ably occurs due to Coanda's effect, or the formation of a low-pressure region below

the shear layer. This effect as it relates to laminar separation bubbles is discussed

by Russell [1978]. When the adverse inviscid gradient exceeds the favorable suction

of the flow below the shear layer, the bubble starts growing without bounds; until,

that is, the large vortex of recirculating flow at constant pressure becomes unstable

and is shed causing the bubble to collapse in size. This small bubble then starts

growing again and the cycle repeats.

Before the above description was arrived at, it was thought that transitional

bubbles, too, were unsteady in the large scale and short-time mean. It was also

thought that the unsteadiness near reattachment would feed back upstream and

influence the transition location. It seems now that if there is some unsteadiness

it should not necessarily be periodic in nature and that the turbulent transfer of

momentum is a much more significant factor in determining reattachment than

Coanda's effect if turbulence is present. Although the final word on transition can-

not be given with the method used in the present model, it appears at this point to

depend mainly on upstream rather than downstream conditions. It is still not clear,

therefore, why the unsteady laminar simulation reported by Pauley et al. correlates

so well with Gaster's measurements of transitional bubbles. Resolution of this issue

may have to wait for a complete understanding of bubble bursting.

Given a means of approximating the viscous/inviscid interaction in the laminar
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part of the bubble and the transition location, the height of the bubble at transition

can be estimated. This geometrical characteristic of the bubble is the keystone that

bridges the laminar and the turbulent parts, providing the correct characteristic

length for the latter. As the spreading angle of the turbulent shear layer is a

weak function of Reynolds number and pressure gradient, in fact, the length of the

turbulent part of the bubble follows directly and the model is thereby closed.



Chapter 3

THE LAMINAR PART OF THE BUBBLE

29

The Eppler and Somers program uses a very reliable criterion to detect laminar

separation. It is based on the value of the energy to momentum thickness shape

factor,

(H3_)s---- 1.515095 (3.1)

This value is approached from above. Upon detection of laminar separation, the

development of the separated laminar shear layer is calculated using the momentum

and energy integral equations, together with closure relations to be discussed below.

Instead of implementing this boundary-layer method in the inverse mode as it is

usually done, the development of a general family of pressure distributions in the

laminar part of the bubble allows its calculation in the direct mode.

Pressure Distribution

The function used to approximate the pressure distribution in the laminar part

of the bubble is a generalization of that developed by van Ingen and Boermans [1986]

and given by Eq. (2.10). This distribution allows a slight pressure recovery after

laminar separation, quickly approaching a limiting value. Using detailed pressure

distributions in the bubble region available from wind-tunnel tests of the NASA

NLF(1)-1015 airfoil in the NASA-Langley Low-Turbulence Pressure Tunnel, the

accuracy of Eq. (2.10) was checked for several different conditions. It was found

that, as the pressure gradient along the bubble decreases, the pressure distribution

tends to fall below van Ingen's curve while, as the pressure gradient steepens, it

becomes flatter, closer to Horton's approximation and above van Ingen's curve. It

is therefore postulated that Eq. (2.10) can be improved by relaxing the amount of
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pressure recovery between separation and transition,

U____= (1 - DU) + DU exp(-4.545_ - 2.5_ 2) (3.2)
Us

The steeper the pressure gradient along the bubble, the smaller the value of DU.

This behavior is consistent with an inviscid velocity distribution calculated over an

ever-thickening displacement surface in a steepening adverse gradient.

While the agreement with the experimental distributions was much improved

by use of Eq. (3.2), an inconsistency became apparent when attempting to predict

the pressure distribution over leading-edge bubbles. Given the very large gradients

along these bubbles, the predicted pressure distributions in the laminar part were

quite flat, in contrast to the measurements which show only a small perturbation

of the inviscid distribution with a significant pressure recovery between separation

and transition. This apparent contradiction with the trend observed for mid-chord

bubbles can be resolved once it is realized that the amount of pressure recovered

is inversely proportional to the magnitude of the perturbation of the displacement

surface, that is, to the amount of fluid entrained by the bubble. Near the leading

edge, the boundary layer is so thin that the short bubbles (1- 6%c) usually observed

there can only hold a very small amount of fluid and can therefore only modify the

inviscid distribution slightly.

Although there is a strong correlation between the thickness of the boundary

layer at separation and the amount of fluid caught in the separated region, the

value of (62)s more precisely reflects the input to the momentum balance that

determines such amount: the greater the momentum already lost by the boundary

layer, that is, the greater the amount of separated flow necessary to counteract the

imposed inviscid gradient. The variable DU should therefore depend both on the

average pressure gradient along the bubble as well as on (62)s. Both these effects

are included in Gaster's pressure gradient parameter, Eq. (1.4) which, for this
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reason, is thought to be a better independent parameter than simply the average

dimensionless inviscid velocity gradient along the bubble,

A(U/U_,) (3.3)
/,(s/c)

In dimensionless variables P becomes,

p =/_ (5_______ss (3.4)
 x(s/c)

From experimental pressure distributions, it is found that DU is well repre-

sented as a function of the Gaster pressure gradient parameter, P. This functional

relationship, shown in Fig. 3-1, was developed by extracting corresponding values

of DU and P directly from the experimental pressure distributions of the NLF(1)-

1015 [NASA LaRC LTPT, June 1987] and the Eppler E387 airfoils [McGhee et al.,

1988]. The solid line is a quadratic least-squares fit that has been included in the

model,

DU = _ 0.0610 + 0.3048P + 0.5072P 2 -P < .3 (3.5)
[ 0.0152 -P > .3

The value of DU = 0.022 used by van Ingen and Boermans falls in the middle of

the variation in DU shown in Fig. 3-1.

As pointed out by van Ingen [1989], the factor 4.545 in Eq. (3.2) was derived to

ensure continuity in the velocity gradient when Thwaites's laminar boundary-layer

method is used to determine the laminar separation point. In fact, if the derivative

of Eq. (2.10) is evaluated at laminar separation and the variables are rearranged,

one obtains

[ 2_v dU] =-(4.545)(.022)=-.10 (3.6)- _s s

which is Thwaites's laminar separation criterion. Eppler's separation criterion (Eq.

(3.1)), however, corresponds to slightly different values of Thwaites's parameter

for differing upstream developments. Furthermore, in the present formulation a
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variable DU is used in place of 0.022. Therefore, the constant necessary to ensure

a continuous velocity gradient at separation when Eq. (3.2) is used in conjunction

with Eppler's laminar boundary-layer method is

act (3.7)
C = -DU - s

When C is substituted for 4.545 in Eq. (3.2), the result is

U _l_DU{l_exp[2uU_S(s_ss)]} (3.8)Us Us

where the prime denotes the derivative with respect to s and the second term in

the exponent of the original expression has been neglected.

Closure

In order to integrate the momentum and energy integral equations in the direct

mode as driven by the pressure distribution given above, closure correlations for

H12, cI, and Co must be provided. The most natural choice is to use the reversed

Falkner-Skan, or Stewartson [1954], profiles since the attached Falkner-Skan, or

Hartree, profiles [Schlichting, 1979] axe used to develop the correlations upstream

of separation. Recent measurements by Fitzgerald and Mueller [1990], however,

seem to indicate that the Stewartson profiles may not be the best choice. This

matter was therefore examined in some detail.

Fitzgerald and Mueller [1990] have obtained good agreement between their

measurements and the two-parameter profile family originally developed by Green

[1966] for a turbulent shear layer forming a free stagnation point downstream of

a base. As shown in Fig. 3-2, the two parameters are linked to the geometrical

characteristics of the profiles. (h/b) is the ratio of the distance of the shear layer

from the centerline of the wake to the width of the shear layer and G is the am-

plitude of Coles's wake function. Since there is slip along the centerline of such a
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recirculating base flow, these profiles cannot be used to develop a correlation for cl.

By applying the definitions for the integral thicknesses of the boundary layer and

for the dissipation coefficient, the following relationships are obtained:

H12 = 1 + 2_ (3.9)

3a) 2 (1 2a)- -

-- 7G + _ + - + (3.10)H32- (2-9 _G _) 4-}(1 3G 2G 2)
(1 3- _G)- 2-}(1 - 2G)

_2_3 3 h (1 - 2G)] (3.11)

In order to compare these relationships to those obtained from the Stewartson

profiles, it is necessary to know how the two parameters vary inside the bubble. The

values used by Fitzgerald and Mueller to fit the profiles measured inside one bubble

can serve as a starting point. The three boundary-layer variables are evaluated

at values of the parameters corresponding to the same downstream station inside

the bubble and then plotted against one another. The same calculations are then

repeated for values of G and (h/b) similar to those used by Fitzgerald and Mueller

in order to determine the sensitivity of the correlations to these parameters. The

result is shown in Figs. 3-3 and 3-4 where these new two-parameter correlations

are compared to those developed by Drela [1986] from the Stewartson profiles. The

solid lines utilize the fitted variations of G and (h/b). As both H12 and H32 increase

monotonically between separation and transition, moving to greater values of the

abscissa on these plots corresponds to moving downstream inside the bubble. Thus,

both are very similar to the Stewartson correlations near separation but can be

quite different further downstream.

While H12(Ha2) seems quite sensitive to changes in the parameters,

CD(Ha2,Ra2) is not, thereby making the determination of its exact dependence

on G and (h/b) less crucial. It appears from the measurements that the back-flow,
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proportional to G, may be constant within each bubble although different for differ-

ent bubbles. As shown in Fig. 3-3, the values of shape factors actually measured,

although different in absolute value, follow the same slope, thus confirming a con-

stant value of back-flow velocity. These considerations justify eliminating (h/b)

between Eqs. (3.9) and (3.10) and expressing the closure relationships in terms of

Ha2, calculated from the governing equations and G, whose behavior within each

bubble appears easier to correlate to local flow conditions,

3(1 - G) - H32

H12 = (1 - G)(I - 2G)

_r2G a [ 3 (4 - 5G)(1 - G)- (2 - 3G)Ha2 ]Rs, CD -- 2 1 -- -_G - 4(1 G) 2H32

(3.12)

(3.13)

Although very encouraging, these results do not appear sufficiently well devel-

oped to be implemented in the model in their present form. In fact, the dependence

of G on local flow conditions is unknown and no measure of c/ can be obtained

from these profiles. By contrast, although the details of the velocity profiles are

not well represented by the Stewartson profiles, the integrated parameters derived

from them are not far from the corresponding values obtained with the fitted Green

profiles. It seems better, therefore, to keep using the Stewartson profiles, for now,

until these issues have been resolved. Accordingly, the closure correlations devel-

oped by Drela [1986] have been implemented in the model. Since the governing

integral equations yield the value of Ha2 directly, Drela's shape factor correlation is

inverted,

l

H321104008[(H3 110 008  ]2= 0.08 + .-_ / -64.4 (3.14)

The skin-friction coefficient is found from

Cf f -0.067 + 0"01977(7"4-H12)H12-12, H12 < 7.4

R62 -_- = [ -0.067 + 0.022 [1 1.4 J 2H12-6 , H12 >_ 7.4

(3.15)
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while the dissipation coefficient is given by

CD __ 0.207 - 0.003(H12 - 4) 2
R62 H3---2

39

(3.16)

Removal of the Separation Sing_

Knowledge of the pressure distribution downstream of separation has led to a

simple technique for removing the Goldstein singularity at laminar separation and

to allow for some effect of the bubble on the pressure distribution upstream of lam-

inar separation. When the development of the laminar shear layer is calculated in

the direct mode from laminar separation using the function described above, the

boundary-layer variables remain at their separation values for a few percent chord

before starting to grow normally. This is believed a consequence of the singularity,

in the following sense. The growth of the boundary-layer variables upstream of sep-

aration does not reflect just the local pressure gradient but is increasingly affected

by the singularity as separation is approached. This effect is equivalent to a much

steeper pressure gradient than is actually present and causes the distribution of H32

to exhibit a very steep slope immediately upstream of separation. The skin-friction

coefficient behaves similarly and thereby leads to a prediction of the separation

point upstream of the experimentally observed location. Therefore, when the sep-

aration values are incremented downstream of separation using a pressure gradient

continuous with its value upstream, it is felt by the boundary layer as, in fact, a

much gentler gradient which cannot maintain the previous rate of growth. In the

present model, the point where the separated laminar shear layer starts growing

again is taken as the actual laminar separation point. The laminar boundary layer

is therefore calculated again from a few percent chord upstream of the "inviscid"

laminar separation point to this point by prescribing between them an assumed

(cubic) development of H12(s) and solving the laminar boundary-layer equations
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in the inverse mode. Smooth growth of the boundary layer through the separation

point results.

The local inverse solution causes the velocity distribution to start deviating

from the inviscid some distance upstream of the laminar separation point. As this

distribution matches the experimental measurements, this behavior of the separa-

tion point and of the corresponding velocity distribution is believed to be correct.

In fact, as the boundary-layer assumptions break down as separation is approached,

a modification to the inviscid pressure distribution upstream of separation is to be

expected. Referring to Fig. 3-5, as the new separation point is usually at a higher

pressure than the original, the old value of DU is usually too great and a new one

is calculated from

DU,,e_ = DUotd - (Us)old -- (Us),e_
(Us)ola (3.17)

Using this value and the new value for the velocity gradient at separation, Eq. (3.8)

can be used to generate a new velocity distribution whose tangent is continuous

with the current distribution at the separation point.

Separation Angle

Using the new value of momentum thickness at the "viscous" separation point,

the tangent of the angle the separating streamline makes with the surface is given

by an empirical relationship proposed by Wortmann [1974],

64P

= - (-a6,)s (3.18)

A similar relationship proposed by van Ingen et al. [1980] was also examined,

B

t=-y_ (R6=)s (3.19)

B is given the experimental mean value of 17.5. The model did not perform at all

well with the latter relationship. The reason is that the factor 64P assumes a wide
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range of values, from as low as 2 up to 30 for the range of bubbles examined, and

their average does not give the model enough flexibility. Eq. (3.18), on the other

hand, gives the correct scaling for this variable. In addition, very similar values

for /3 as given by Eq. (3.18) have been reported by Pauley et al. [1988] in their

Navier-Stokes simulation. Eq. (3.18), therefore, has been included into the model.

r
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The prediction of the transition location inside the bubble has received a great

deal of attention since the very first models. In fact, both the drag increment due to

the bubble as well as the bursting behavior depend strongly on the location where

the calculations switch in a more or less gradual way from laminar to turbulent

flow. Although it has been claimed that the length of the transition region inside

the bubble must be modelled accurately [Walker, 1989], a point-transition has been

found to work very well in the present model. In this chapter, a few empirical

transition criteria are discussed together with the method employed in the model.

Empirical Criteria

Ever since bubbles were first observed, many researchers have looked for an

empirical correlation between the distance from separation to transition and local

bubble characteristics such as conditions at separation. Since it was observed that

the length of the bubble is inversely proportional to the Reynolds number, the first

transition criterion, proposed by Von Doenhoff [1938], assumed a constant Reynolds

number based on the velocity at separation and the distance between separation

and transition,

UJ:
Rt, -- -- 50,000 (4.1)

V

As the Reynolds number increases, Us usually increases, too, such that this criterion

forces the laminar length to decrease in size. Horton [1967], thirty years later, used

a value of 40,000. This expression can be rearranged as

el [40,000 (6 )s
- (4.2)

z

w
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O'Meara and Mueller [1986] took an experimental mean from many sets of data as

fl _ 155(52)s (4.3)
c C

which is a less general relationship. As pointed out by Schmidt and Mueller [1989],

these relationships cannot capture the vanishing of the bubble at the experimentally

reported value [Crabtree, 1957] of momentum thickness Reynolds number at sep-

aration of about 750, over which transition precedes laminar separation. Schmidt

and Mueller describe how the correlation developed by Vincent de Paul [1972] is

able to capture this effect by allowing a variable Rtl. Similarly, based on the same

data sets used by O'Meara and Mueller, Schmidt and Mueller propose the following

criterion,

gl f [513- 3.7820(Re2)s] (_2)s 27 < (Re2)s < 72

_ [ c , (4.4)c [267 - 0.3709(R_)s] (_2)s 72 < (R62)s < 720
C '

such that the bubble length vanishes at values of (Re2)s > 720. Fig. 4-1 shows

this criterion in graphical form together with Eq. (4.3). Since Eq. (4.3) does not

incorporate any dependence on (R62)s, it is shown in the figure as a plane whose

projection onto the (52)s/c-g_/c plane is simply a straight line through the origin.

While it is true that the Reynolds number has a strong influence on the tran-

sition length, and therefore on the overall length, of separation bubbles, this effect

is reflected in many of these correlations in a rather coarse way. The correlations

for which the transition length is proportional to the value of momentum thickness

at separation better predict the length of leading-edge bubbles due to a spurious

coincidence. For airfoil flows, in fact, small values of (52)s correspond to leading-

edge bubbles, which form on large suction peaks near the stagnation point and are

usually quite short. Larger values of (52)s are usually associated with mid-chord

bubbles that occur far downstream of the stagnation point and are usually much

longer. Fig. 4-2 illustrates this effect, where the isolated points are leading-edge
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Fig. 4-1 Comparison of two empirically derived transition correlations

for the separated laminar shear layer.
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bubbles. The value of (_2)s, however, does not in itself contain any information

about the stability of the separating shear layer. In fact, no empirical criterion

developed so far can capture the effects of a variable pressure distribution. Specif-

ically, no local criterion can capture the vanishing of the upper-surface mid-chord

bubble with increasing angle of attack.

Eppler's Transition Criterion

Given the success of Eppler's transition criterion in predicting the transition

location in attached boundary layers, it was thought that it should be possible to ex-

tend such a criterion to separated boundary layers. Whereas the criteria described

above seek a correlation between transition in the free shear layer and conditions

at separation, which is at a different location on the airfoil, Eppler's criterion is

based on the local characteristics of the boundary layer. Since, unlike in the early

bubble models, the boundary layer development here is calculated also downstream

of separation, it seemed that monitoring the development at each downstream in-

crement would naturally lead to a more accurate transition prediction. In order

to better explain how Eppler's criterion is implemented, Eppler's boundary-layer

development plot should be described.

Integration of the momentum and energy integral equations gives the values of

_2 and _3 at each downstream station. The shape factor H32 = _3/¢52 is therefore

also known. Since the inviscid velocity along the airfoil is taken as the boundary-

layer edge velocity that drives the boundary-layer development, U and 62 at each

downstream station can be grouped to obtain the development of R62. Eppler con-

nects subsequent (1-132,R62)-pairs on a plot whose axes measure the variation in

these two variables, thereby describing the boundary-layer development from the

stagnation point to the trailing edge in a very concise way. The stagnation point

occurs at a value of/-/32 = 1.62 and R6_ approximately equal to 10. Values of

w
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R_ 2 < 10 are not plotted. Fig. 4-3 shows a typical boundary-layer development.

Following the upper surface development given by the solid line, laminar separa-

tion is encountered when Ha2 = 1.515095. This criterion is shown on the plot as a

vertical dotted line. From the laminar separation point, H32 starts growing again

until transition is met. While Ha2 grows monotonically inside the laminar part of

the bubble with downstream distance from laminar separation, R62 stays approxi-

mately constant. A very similar criterion to Eq. (4.4) can therefore be constructed

by correlating the value of Ha2 at transition to (R62)s. The particular transition

criterion for separated shear layers shown in this figure as a family of cubits intro-

duces an additional dependence on P. Thus, while the bubble is seen to disappear

at values of (R62)s > 875, for smaller values (H32)7-increases with decreasing P.

This trend in (Ha2):r does not necessarily imply a similar trend in laminar length

since the rate of growth of H32 depends on the pressure distribution in the lami-

nar part of the bubble. Although unsuccessful, this and similar criteria served to

illustrate how poorly (H32):r correlates to local bubble conditions incorporated in

parameters such as P and (Re,)s. In fact, while any one particular bubble could be

matched quite easily with a criterion as shown in the figure, any such criterion was

consistently found of very limited generality. Downstream of transition, the tur-

bulent shear layer growth causes H32 to decrease again to a value at reattachment

which is weakly dependent on the local momentum thickness Reynolds number and

always close to 1.51. The attached turbulent boundary-layer development causes

/-/32 to increase again toward the flat-plate fully developed value of 1.77. As the

trailing edge is approached, the adverse pressure gradient drives the boundary layer

toward turbulent separation which occurs at H32 = 1.46 for Eppler's method and

/-/32 = 1.51 for Drela's method, which will be discussed in the next chapter.

In the course of these investigations, it was found that the curve corresponding
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to attached transition will cause natural transition to be predicted in many cases

where a bubble is actually present. This happens because the value of Reynolds

number at which transition precedes laminar separation can be quite high. In fact,

it can be higher than the value of 720 proposed by Schmidt and Mueller. Eppler's

original transition criterion [Eppler, 1963], not shown, intersected the laminar sep-

aration line at Re 2 = 463. Based on additional measurements, Eppler [1989] has

modified the criterion to

[in R_2]_- _> -21.74 + 18.4Ha2 + 125(H32 - 1.573) 2 (4.5)

where now the intersection occurs at R62 = 704. For such a value, however, tran-

sition is still predicted too soon when the boundary layer is near separation. In

order to be able to compare bubbles forming on airfoils at chord Reynolds numbers

of one million or greater, approximately, the 125 in Eq. (4.5) is replaced with 190.

This leads to a value at the intersection of ]_ = 875, which seems to work well.

This apparent coarseness in Eppler's criterion is due to its having been calibrated

mainly from airfoil drag coefficient data rather than from a modelling of the actual

transition process. The reason why transition is predicted instead of a bubble at

high chord Reynolds numbers is simply that at such values the bubble does not

cause any significant drag increase; in fact, it usually causes the same increase in

momentum thickness that is given by the attached turbulent boundary layer over

its length.

In an attempt to reconcile Eppler's transition criterion with another very suc-

cessful transition prediction method, the e" method, they are plotted together in

Fig. 4-4. In the e n method, a value of r_ = 9 has been found to correspond

to observed transition locations in many different flows. Rather than using Ep-

pler's boundary-layer development plot, this comparison is done here on a plot of

]:t62 vs. 1-112 in order to include several measurements of these variables at observed
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transition locations. This comparison was attempted also because, since the en

method can predict transitionsuccessfullyin a separated shear layer,itwas hoped

that a suitable criterionfor use in the boundary-layer development plot could be

inferred from it. In this figure,contours of constant n are given for the Falkner-

Skan self-similardevelopments [Schlichting,1979]. For such developments, in fact,

a unique surfaceexiststhat allows the determination of the value ofn from the local

values of the momentum thickness Reynolds number and shape factor alone. The

equation defining thissurface was developed by Drela [1986]and willbe discussed

below. Shown in thisfigureis Eppler's transitioncriterionfor attached boundary

layers as well as one of the attempted criteriafor separated flow. It isinteresting

that Eppler's curve fallsquite closeto the n = 9 contour, for zero-pressure gradient

flow (H12 = 2.59). As can be seen from the wide scatter in the experimental data,

however, itseems dubious that a singlecurve could capture the correct transition

location inside the bubble with any generality.In fact, the growth of n in a non-

similar boundary layer development willnot follow the surface whose contours are

shown in the figure,regardless of whether the flow is attached or separated. This

implies that transitionisnot dependent solelyon the local boundary-layer charac-

teristicsbut depends alsoon the manner in which the boundary layer arrivesat such

values. The inclusionof path-dependency, or the effectof upstream boundary-layer

development on transition,has captured the generality that the transitioncriteria

discussed so far lack In order to fullyunderstand why, the en method willnow be

discussed in detail.

The e n Method

The e n semi-empirical transition prediction method, developed thirty years

ago [van In_;en, 1956; Smith and Gamberoni, 1956] and since successfully applied

to a variety of aerodynamic flows, relies on a theory that can explain the moderate
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successof someof the correlations described above,that can correctly distinguish

betweenleading-edgeand mid-chord bubbles,and that can correctly model the ef-

fccts of variations in pressuredistribution upstream of the bubble. Linear stability

theory, in fact, directly models the growth of instabilities in a boundary layer while

indirectly, through the boundary-layer development, accounting for the effects of

Reynolds number, n(s) is defined as the logarithm of the ratio of disturbance am-

plitude at station s to its amplitude at neutral stability, so. Transition is assumed to

take place when n reaches a value previously correlated to experimentally observed

transition locations. For similar flow environments this value has been reported

to lie around 9 by many researchers, although it appears to depend on Reynolds

number [Evangelista and Vemuru, 1989; Horstmann et al., 1990].

It is generally accepted that linear stability theory correctly models the transi-

tion process for approximately 70% of the distance between neutral stability (n = 0)

and fully turbulent flow. The actual "transition region," however, is usually defined

as the region between the first appearance of turbulent spots and fully turbulent

flow [Arnal, 1984], or the last 30% of this distance. In order to approximate the

transition process in the nonlinear amplification region, an intermittency function

is usually employed at a value close to n = 8. Equally often, transition is taken to

be completed when n = 9 - 14 and the turbulent calculations are started abruptly

at the corresponding streamwise station. In both cases, significant empirical input

is necessary to render the method usable. Another concern associated with this

method is that the amplitude of the disturbance at neutral stability is unknown.

The inability of the method to model directly the influence of the turbulence in-

tensity of the oncoming air and surface conditions on the onset of transition forces

the use of further empirical corrections [Mack, 1977]. In spite of these weaknesses,

the e '_ method remains the engineering transition prediction method most faithful
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to the actual physical process.

The cn method is based on the numerical solution of the Orr-Sommerfeld

equation which is derived from the Navier-Stokes equations as follows. The two-

dimensional Navier-Stokes equations are perturbed and linearized. An assumption

of locally parallel mean flow is made. Subtracting the mean flow, a system of three

partial differential equations for the perturbation field is obtained. Since the coef-

ficients are functions only of y, the method of normal modes can be applied in the

particular form

v'(x, =ae p(y)e
F "1

(4.6)

which implicitly assumes a sinusoidal disturbance. Here v I is the disturbance in the

y-direction. Similar expressions are assumed for u I and pl. a* is the wavenumber

and co* the radian frequency, which can be nondimensionalized with respect to a

reference length and velocity,

o_ = o_*Lref

co*L_,/ (4.7)
co--

Substitution of these expressions into the partial differential equations for the dis-

turbance field results in a set of three ordinary differential equations for the dis-

turbances. Eliminating t__ and /31 in favor of 9t the Orr-Sommerfeld equation is

obtained,

5,1,,+ [_in(_u, _), 2_2]¢, + [iR(_u _ co)_2 +inu,, + _4]_ = 0 (4.8)

a and ¢o are, in general, both complex. Although the derivation and the analysis

are performed in the complex plane, it is understood that physical quantities are

obtained by taking the real part of any of the complex variables employed.

Two limiting cases of interest are

{ o_ = o_r, co = Wr + icoi temporal instability (4.9)a = a_ + iai, co = w_ spatial instability
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To calculate the amplification of disturbances as the boundary layer develops,a

spatial instability analysis is necessary.Thus, the Reynolds number and the fre-

quency are specifiedand the wavenumberis found by solving numerically the Orr-

Sommerfeldequation subject to the boundary conditions

dv t
v 1- -0 at y=0 and as y_ec (4.10)

dy

The homogeneous boundary conditions imply the existence of an infinity of solutions

or eigenvalues a. The value of greatest physical interest is the eigenvalue for which

-ai is largest. This can be seen from the expression for the fluctuation,

v' = _(y)e i[(_7 +ia,'. )_-w: tl

(4.11)
=

where _(y) is the distribution of the disturbance amplitude (eigenfunction) and

the bracketed term is the amplitude of the disturbance at a distance x from some

reference point. The ratio between this term evaluated at two different x-locations

represents the amplification of a disturbance between them. Assuming a boundary

layer developing in zero pressure gradient,

^ I

A2 v(y)e-,_, -2 __;(,2_,,) (4.12)
v( )e

The amplification factor, n, is defined as the logarithm of this ratio,

o •= (4.13)

The amplification factor is thus equal to the area under the amplification rate curve.

In this case, this curve is a constant because the parallel flow approximation and

the absence of a pressure gradient prevent any change in the local Reynolds number

such as, for instance, R62.

The continuous wavelength modulation encountered by a fixed-frequency dis-

turbance travelling downstream in a developing boundary layer is approximated
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locally by a series of constant-wavelength plateaus, obtained by solving the Orr-

Sommerfeld equation for a sequence of parallel mean flows of different thicknesses

and at different pressure gradients, each characterizable by a different value of R62

and H12. As the streamwise extent of the plateaus tends to zero, Eq. (4.13) can be

generalized to

_2 * dx (4.14)?2 _ --O_ i

1

As a measure of how far from transition a boundary layer is, it is preferred to

calculate the total amplification that has occurred: the amplification, that is, from

the lower branch of the neutral curve,

m

L _

w

o_$5
= (4.15)

0

where the independent variable is again s, the distance along the airfoil from the

front stagnation point.

In general, the disturbance environment in a wind tunnel or in free flight does

not consist of a single-frequency pressure pulse but, rather, of broad-band or white

noise. The boundary layer simply amplifies those frequencies that, at a specific

local Reynolds number, correspond to what in simpler dynamical systems is called

the natural frequency. Since the local boundary-layer Reynolds number changes

with downstream distance, different frequencies are amplified as the boundary layer

develops. This necessitates the tracking of several different frequencies at the same

time, with the first that reaches n = 9 indicating transition.

As the frequencies amplified in the separated shear layer may be ditTerent from

those upstream of separation, it may not be necessary to monitor the stability of

the laminar boundary layer upstream of separation. The fact that some frequencies

may come close to n = 9 upstream of separation does not necessarily imply that

transition will occur sooner once the boundary layer separates. If this is true,

v
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then it should be possible to devise a transition criterion based solely on local

information, for instance on conditions at laminar separation. The consistent failure

of all previous such criteria would still not be sufficient proof of the untenability of

this hypothesis.

Drela's Approximate e" Method

While the questions raised above need further study, for the present time the

approximation to the e '_ method developed by Drela [1986] has been implemented

in the Eppler and Somers program. In order to demonstrate that this method intro-

duces an error in the calculation of n over and above its declared approximations,

it is now discussed in some detail.

Rather than performing a linear stability analysis of the boundary-layer velocity

distribution as can be obtained, for instance, from a finite-difference method at each

downstream station, following Gleyzes et al. [1983] Drela computes a data base of

the stability characteristics of the Falkner-Skan profiles that can be "tapped" during

a boundary-layer calculation using the local shape factor as the coupling parameter.

More precisely, the nondimensional growth rate, -a i, corresponding to a particular

value of the local shape factor of a Falkner-Skan profile and of the local Reynolds

number is divided by the local boundary-layer characteristic thickness, i.e. 62,

to obtain the physical growth rate to be used in the integral (4.15). Given that

the correct characteristic thickness is obtained independently, from the momentum

integral equation, the manner in which the nondimensional data base is generated

is of no consequence. The most convenient way is to calculate the growth rates for

self-similar developments at constant H12 values and increasing R6=. Starting from

the Orr-Sommerfeld spatial instability analysis of the Falkner-Skan profiles at many

different values of/-/12, a set of neutral curves is generated, one for each value of

shape factor. An example of these neutral curves is shown in Fig. 4-5 for two values
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of H12. For each value of shape factor, the dimensionless amplification rate, -ai,

is evaluated along rays of constant reduced frequency,

F- 2rcfu
U2 (4.16)

to form curves -o_i(H12, R52, F). From these curves the amplification factor for the

development of each Falkner-Skan profile is found from

jr8 $
n( HI_ , Rs_, F) = -o_ ds

0

f r% _aT dR_=
J R6_o ds

For a Falkner-Skan profile,

(4.17)

u - u 1+ m U f'(1 - f')dq (4.18)

where rn is constant and defined as

m --

s dU

U ds
(4.19)

Denoting the momentum-thickness integral (not a function of s) by I,

Z

I
R_ = 1 -Fm u (4.20)

Thus,

=gI 1+ ---_- sl +mus U

=I l+m_,s 2

-- [(l+rnU)½_] I22_s

12

62
(4.21)
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Thus, Equation (4.17) becomes,

1 fR6_
n( H12 , R_2, F) = -fi ,j r_,2°
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-(Wh) d/G

f_6_ -ai(H12, F) dR_ (4.22)
1

-[Z(H12)p J_,20

In this way, the original dimensionless eigenvalues of the dimensionless Orr-

Sommerfeld equation can be used to find n, which is defined in terms of a di-

mensional wave number and distance. This can be done for a self-similar profile

since dR62/ds assumes the particular form shown.

The curves obtained with this integral for different frequencies and at a constant

H12 are shown in Fig. 4-6. Drela takes the envelope as a straight line as done by

Gleyzes et al. [1983]. This leads to the following expression for the amplification

surface for selSsimilar developments,

dn H
n(R_,H_)= d--_ (_) [_-R_0(H_)] (4.23)

where the superscript "e" denotes a value obtained from the envelope of amplified

frequencies and

= 0.01[{2.4H_2 - 3.7

+ 2.5 tanh[1.5(H_2 - 3.1)]} 2 + 0.25]½

dn H e]_( _)

[ 1.415 0.489]tanh[ 20 12.9]l°gl°[R62°(H'_)] = [H_2:1 H12-:-- 1

3.295
+ + 0.440

H12 -- 1

While Gleyzes et al. then evaluate the amplification integral as

dn H

R, 2 o

(4.24)

(4.25)

(4.26)
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Drela changes the variable of integration back to s,

j[ s dn •_(_)= [--(HI_), d_ (4.27)1 dR62

o [dn_, j

At this point, Drela finds an expression for dR_2/ds in a rather roundabout way.

d-'_ - u ds +----u ds

1 s dU U52 U d52 1 52 dU
_ +----+

2 U ds us u ds 2 u ds

1 [s dU us d52 152

=_ L_-_2+2_, d--7+ _-2_ _ _

He shows that dR_2/ds equals this last expression with a 1 in place of the sec-

ond term inside the square bracket. If this is taken as a condition, the resulting

differential equation can be integrated as follows,

( --us U d52 1 5_

:. 2 _--_-_-2 _ d---_-+ 2 u

s d52 s dU

26_ d--T+ u d_ - 1

[s 2 lnS_) + _s(lnU = 1

d [ln(5_U)] = 1

ds
_ d[ln(5_Y)] = --

3

r

u

ln(52U) = Ins + C

5_U = Cs

52 = CIu (4.29)

Thus, the functional form characteristic of Falkner-Skan profiles is recovered, where

the constant is in general a function of the shape factor. Drela now introduces the

two "empirical relations" (given in the Appendix),

s dU

U ds - re(H12) (4.30)

u_
-e(H_) (4.31)

118
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\'Vhat he means is "analytical correlations from the Falkner-Skan profiles." Since

he is using these profiles here and since his form for dti62/ds indeed implies the

assumption of a Falkner-Skan 62-growth, it is not clear why he did not simply

substitute the Falkner-Skan expression for 62(s) directly into his expression for

dR_2/ds , Eq. (4.28),

ds - 2 _ + 1 us 62

IS

62

o_ ]21 +m 62

(4.32)

which is identical to Eq. (4.21). Thus, Drela only had to curve-fit I(H12).

Having established that

re(E12) + lt(g12) = [i(//12)]2
2

(4.33)

. °

"r;

W

Drela's integral for evaluating n(s),

n(s)= (H_2) 2 62(s) ds
0

(4.34)

can be written, using Eqs. (4.17), (4.21), (4.26), and (4.33),

L _-2 J 6-_ds
(4.35)

where 62(s) comes from the non-similar boundary-layer development as calculated

by the momentum and energy integral equations. Thus,

n(s) = fy " [-a*62]¢ds (4.36)o

= o _ ds (4.37)

mw
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Which is identical to the expression used by Stock and Degenhart except for the use

of an envelope to find oq. Using 52(s) as calculated by the governing equations is

precisely what enables the method to account for upstream history on the growth of

n. That is, the dimensionless growth rate -o_i obtained at each downstream station

from the value of H12 and R,2 is divided by the local boundary-layer momentum

thickness which is in general different from the value in a self-similar development

at the same value of H12 and R6_.

The Envelope Error

In collaboration with Selig [1990], the author found that, even if Drela had used

the actual envelope of the amplification curves instead of approximating it with a

straight line, his n(s)-development would not correspond to the true envelope of

the amplification curves at constant frequency along the airfoil surface. The error

arises whenever the boundary-layer development is non-similar. To see this, it is

necessary to rely on a numerical example, since the functions in question are not

known analytically but are obtained numerically. Thus, it is helpful to envision a

fictitious boundary-layer development made up of two constant-H12 lengths with a

discontinuous jump in between. Fig. 4-5 shows the neutral curves corresponding to

the two values of shape factor. It is desired to compare the growth of n obtained

by following the development through the jump in H12 at constant frequency to

that obtained using Drela's envelope. Fig. 4-6 shows the amplification curves for

the three reduced frequencies shown on the neutral curves plot as calculated by Eq.

(4.22) together with the envelopes given by Eqs. (4.23)-(4.25) for the two values

of H12. Fig. 4-7 shows the n-growth along the boundary layer with the switch in

shape factor occurring at R_2 = 500.

The three frequencies selected represent limiting cases that serve best to eluci-

date the argument. Referring to Fig. 4-7, as /_6_ increases n(F1) grows according
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to Fig. 4-6 up to the maximum and, just as it is ready to start decaying, the jump

in H12 forces further amplification until the upper branch of the neutral curve cor-

responding to H12 = 2.67 is crossed. This additional growth will not necessarily

be steeper than the envelope, n(F2) does not start being amplified until the switch

occurs, at which point it grows quite steeply in accordance with the greater area

under the amplification rate surface -ai(2.67, R6_,w). This curve does not nec-

essarily exceed the envelope. Starting with the F3-curve, at all lower frequencies

the growth of _z will follow the H12 = 2.67 line, which is parallel to but greater

than Drela's envelope. In this example, it is possible to recover tile steep similarity

growth given by Eq. (4.23) since the shape factor is held constant downstream of

the switch. In a non-similar development, however, the variation of I-it12 is con-

tinuous. If a monotonically increasing shape factor is approximated by a series of

infinitesimally small steps, the resulting growth on n will never be able to "catch

up" with the value obtained from a self-slmilar profile at the same local shape factor

and Reynolds number. The correct envelope obtained by following each frequency,

therefore, will lie above Drela's approximation without ever reaching the growth

given by Eq. (4.23). The converse is true for an accelerating boundary-layer.

Based on the above argument, Drela's envelope method may be expected to

overpredict the transition location for non-similar, decelerating flows and to under-

predict it for non-similar, accelerating flows. This method has been incorporated

in the model nonetheless, although the method of Stock and Degenhart should be

extended to separated profiles and used in its stead in future research.



Chapter 5

THE TURBULENT PART OF THE BUBBLE
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The calculation of the turbulent part of the bubble relies on the assumption that

reattachment will occur. An independent bursting criterion has not been devised,

nor have existing ones been tested. The reason is that bursting occurs either at

very low Reynolds numbers or when the mean inviscid pressure gradient becomes

too steep, downstream of a suction peak. Regardless of the fact that the same

mechanism may not be responsible for both types of bursting, both conditions

represent extremes that lie outside the capabilities of the simple approach taken with

the present model. This is not so much because of a failure of the bubble model itself

but, rather, because at such extremes the onset of strong global vlscous/inviscid

interaction modifies too greatly the inviscid pressure distribution which drives the

model.

In this chapter, a parameter that characterizes the turbulent part of the bubble

is introduced and the modelling of the reattachment process within the context of

an integral method is discussed in detail.

Scaling Parameter

Having obtained a good approximation of the strong local viscous/inviscid

interaction induced by the laminar part of the bubble and a fairly accurate transition

location, now a steep pressure recovery must be predicted in order for the turbulent

shear layer to reach again the inviscid distribution as it flows past reattachment,

downstream of the strong interaction region. In the laminar part, the strength of the

interaction depends on the amount of near-stagnant fluid downstream of separation

and can be gauged by the deviation of the local viscous pressure distribution from
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the inviscid. As this amount is, in turn, proportional to the local mean inviscid

pressure gradient and to the momentum already lost by the boundary layer--to

(52)s, that is--it is not too surprising that the pressure recovered in this part of

the bubble correlates well with P. In the turbulent part, on the other hand, the

strong interaction is the result of a different mechanism, which acts to reverse what

happened in the laminar part. As a consequence, the solution may be expected to

depend on a different scaling parameter.

Assuming the boundary-layer equations to be valid in this region allows the

use of conditions at transition as initial conditions for the turbulent calculations. A

similar approach to that taken in the laminar part was attempted, at first. Thus,

several types of velocity distributions, similar to Horton's straight line or to Strat-

ford's recovery, were prescribed and the boundary-layer equations were solved in the

direct mode. In addition to the difl3eulty in approximating observed reattachment

velocity distributions with any degree of generality, the solution was found highly

sensitive to the smallest variations in the input pressure distribution, suggesting

that this part of the bubble could not be calculated by solving the boundary-layer

equations in the direct mode.

Unlike in the laminar part, it is more convenient here to approximate the

distribution of Ha2 than that of edge velocity. In fact, given that the value as well

as the slope of the Ha2-distribution is always known at the reattachment point,

a general function has been developed in this study which allows the solution of

the turbulent part of the bubble in the inverse mode. The distribution of H32 is

specified as

tt32(gJ)=(lta;)_+Ai [(H32)7-- (H32)_] {1 + sin [y]} (5.1)

where the subscript i = 1,2 denotes the amplitudes of the sin(I/x) function up-
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(5.2)

(5.3)

(5.4)

where

SF = X/_I/A2 (5.5)

ensures continuity in the curvature of H32(s) at the reattachment point. This

function is shown in normalized form in Fig. 5-1.

The inverse boundary-layer formulation employed here, where the distribution

of shape factor is specified [Eppler, 1989], is especially convenient and powerful since

it allows complete control of the boundary-layer behavior in an otherwise extremely

sensitive region while at the same time relying on an intrinsically general function.

Indeed, in view of the discussion given above concerning the reversal of solution

hierarchy in regions of reversed flow from the standard weakly-interacting boundary-

layer formulation, it is perhaps not mere coincidence that an inverse method should

prove so much more effective in this part of the bubble. Such effectiveness, however,

comes at a price. In fact, while specification of the pressure recovery distribution,

if the correct one were indeed known in general, would automatically drive the

boundary layer to reattach at the correct location, the turbulent length of the

bubble, _72, in Eq. (5.4) is not known a priori and must be found by independent

means.

For some time during the model development, the inviscid velocity distribution

was used to guide the location of the reattachment point. The correct value of _2,

that is, would be the one that leads the pressure at reattachment near the inviscid
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value at the same station. Previous models, such as Horton's, have also assumed

that reattachment occurs at the intersection of the bubble recovery with the inviscid

pressure distribution. Using the experimental pressure distributions for the NLF(1)-

1015 airfoil, however, integration of the boundary-layer equations in the direct mode

along the bubble revealed that the reattachment point may lie significantly above

as well as below this intersection. Although the validity of this result is limited by

the accuracy of the closure correlations employed, as well as by the assumption of

the validity of the boundary-layer equations themselves, the observed trends seemed

too consistent to be mere coincidence. Specifically, it was observed that for long,

high-drag, mid-chord bubbles, corresponding to the middle of the airfoil drag polar,

the reattachment point is always below the inviscid distribution (above, in the value

of pressure) whereas for short mid-chord bubbles about to disappear corresponding

to the top of the low-drag bucket in the airfoil polar, as well as for leading-edge

bubbles, the reattachment point is always well above the inviscid. Allowing this

point to move and trying to reproduce the observed trends by means of an empirical

function based on local bubble conditions was helpful in obtaining reasonable drag

predictions at least for a single Reynolds number. The inability to justify such a

function physically and its limited generality, however, prompted further study.

It was noticed that interaction methods have no trouble pinpointing the unique

solution. Whereas the accuracy of such computed solutions still depends on the ac-

curacy of the correlations, their mere ability to reach a converged solution indicates

that all the necessary physical constraints are somehow accounted for. Also, their

success at predicting the correct trends with respect to the location and pressure

level of the reattachment point is explained by their ability to "sense" the presence

of the wall through variations in the strength of the transpiration velocity or through

the shape of the displacement thickness itself needed for convergence. An equiv-
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alent geometrical constraint had to be introduced in the present model. Whereas

prescribing the pressure level at reattachment is consistent with a direct formula-

tion of the boundary-layer equations, in a region of such strong viseous/inviscid

interaction as the bubble the inverse formulation of the boundary-layer equations

should be complemented with the treatment of the correct physical process as the

independent one to reflect the reversal in the solution hierarchy. The local flow-

field is driven by a turbulent momentum-transfer mechanism whereby the outer

mornentum brought toward the wall accelerates the near-stagnant reverse flow un-

til reattachment is achieved. Reattachment, therefore, becomes dependent on the

efficiency of this mechanism. In geometrical terms, the reattachment location be-

comes dependent on the spreading angle of the turbulent shear layer and on the

initial distance of the shear layer from the wall; that is, on the height of the bubble

at transition. Since the spreading rate of the shear layer is nearly insensitive to

variations in Reynolds number and, in this particular flowfield, in inviscid pressure

gradient, the turbulent length of the bubble becomes almost entirely dependent on

the thickness of the bubble at transition nondimensionalized with respect to the

airfoil chord. Making the characteristics of the turbulent part of the bubble depend

on this parameter has enabled the model to reproduce all the available experimental

data with excellent and consistent accuracy in the range 100,000 < R < 2,000,000.

i

Governing Equations

Following Eppler [1989], the distribution of/-/32 described above is input into

the momentum and energy integral equations expressed in the inverse mode,

ds - (cs/2)H32 -CD + 52dH32]
U

ds J 52H32(H12 - 1)

d52

ds

3(cs/2)H32

H12 + 2

- dH32 ] H12 + 2
+ Cv - 52--7--/ -

ds J H32(H12 1)

(5.6)

(5.7)
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where H_2 denotes the derivative with respect to s of Eq. (5.1).

Drela's turbulent boundary-layer method makes use of an additional equation,

the turbulence lag equation. Following Green et al. [1973], Drela simplifies the

stress-transport equation originally proposed by Bradshaw and Ferris [1968] to a

ratc equation for the maximum shear stress coefficient,

where Cr is defined as

5 dCT 4.2(C . - (5.8)

c, = Us (5.9)

and 5, the boundary-layer thickness, is given by

1.72 )5=52 3.15-t- H12-1 +51 (5.10)

This system of equations needs to be supplemented with closure relations for CD,

H12, c I, and Croq.

= =

Closure

Much of the following discussion is an expansion on that given by Drela [1986].

The maximum shear stress coefficient is used in the expression for the local dissi-

pation coefficient. Its deviation from the equilibrium value, C,-_, as calculated by

means of Eq. (5.8) accounts for the slow response of the intensity of the turbulence

being convected from upstream to varying local conditions. The equilibrium value

refers to the equilibrium turbulent boundary layers of Clauser [1954], for which the

local pressure gradient acting on the displacement thickness is balanced by the local

wall shear stress. The ratio of the two forces acting on an incremental "slice" of the

boundary layer is a constant,

51 dp 2 51 dU
-- -- fit (5.11)

r_, ds cf U ds
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For equilibrium flows, the modified shape parameter Gt is also constant,

Gt = H12 - 1 1 1 52 (5.12)

H,2 _vQ75 v_/2 zx

A is the displacement thickness scaled in an analogous way to the defect profile,

f0 ° U - u u.
zx = --@ = _1- (5.13)

u. U

where

To lowest order, the defect law (u - U)/u, vs. y/5 will collapse the outer layer

of any boundary-layer development for which fit equals a constant. Thus, there

exists a unique relationship between Gt and fit for equilibrium boundary layers, or

"equilibrium locus" [Kline et al., 1968],

Gt = 6.7V/1 + 0.75fit (5.15)

Using Eqs. (5.11), (5.12), and (5.15), the velocity gradient can be expressed as

_ldU 1 [__ (H12_-}_ 2]U ds - 0.75 \ 6.7H1_ ,] (5.16)

Noting that for these flows H12 and H32 are nearly constant, Eq.

simplified to

52 dUCf

0 = Or) - --e-_Ha2 + H32(Hl_ - 1)
2 ds

(2.5) can be

Eliminating the velocity gradient between Eqs. (5.16) and (5.17), yields an expres-

sion for the dissipation coefficient valid only for equilibrium flows,

ca = V HG 1 -5- + 0.03L HI_ (5.18)

In the laminar boundary-layer calculation, the closure reIationships are derived

from the similarity profiles and, strictly, are valid only for such flows. This means

(5._7)
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that if for a self-similar development the Falkner-Skan pressure gradient parameter

is calculated directly from its definition [Schlichting, 1979],

# _ dU
v ds (5.19)

this value will be constant and will correspond to a unique value of the shape factor,

also constant. In a non-similar development, on the other hand, the relationship

between fl and Ha2 is not unique anymore. It is found in this case that calculating

the shape factor from the governing equations while disregarding entirely the local

value of _ allows accurate values for Co, H12, and cI to be obtained even though

the similarity correlations are utilized. In the calculation of the turbulent boundary

layer the same approach is used by Eppler [1963] who utilizes empirical correlations

that are valid mostly for equilibrium flows. In this case, however, obtaining the

shape factor from the governing equations is not sufficient anymore if the pressure

gradient is varying too rapidly as, for instance, downstream of a bubble. This is

because of the large inertia of the Reynolds stresses that respond slowly to variations

in local pressure gradient. As the stress level is the most important physical quantity

in a turbulent boundary layer, it makes sense for there to be a need for its careful

modelling in flows that depart too greatly from equilibrium assumptions. Just

as in the laminar case decoupling the shape factor from local conditions brought

a great gain in accuracy, so here the maximum shear stress coefficient should be

decoupled from a statement of the type of Eq. (5.21) (in the next page) and obtained

independently. Therefore, just as in the laminar case an additional equation is

necessary, the kinetic energy integral equation, a third governing equation must be

introduced, the rate equation for C,-.

The integral variable which is affected the most by the stress level in the bound-

ary layer is the dissipation coefficient. In the Iaxninar case, obtaining the shape

factor independently was sufficient to obtain accurate values of CD through the
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similarity correlation, Eq. (3.16) inside the bubble. Although this provides no

guarantee of success for the turbulent case, an analogous argument is followed and

Eq. (5.18) is assumed to be valid also for non-equilibrium flows. In order to be able

to use it, however, it must be expressed in terms of C,-_,. To this end, the dissipation

coefficient is assumed to equal the sum of a wall and a wake contribution,

CD = cyUsu p + 2Cr,,(1 - Uslip) (5.20)

By equating this expression to Eq. (5.18),

0.015H32 - 1] 3c_.,_ i: u-E-;,,t _

Usti,- /_2 [Hi2 1]

So that, finally, the dissipation coefficient is given by

(5.21)

(5.22)

'"L

CD : cfUslip -_- 2C,-(1 - U_up) (5.23)

where U_up is given by Eq. (5.22) and C,- is calculated from the rate equation (5.8).

The shape factor correlation is derived from the analytical profiles of Swaf-

ford [1983]. In the present method, this correlation needs to be expressed in the

form H_2(H32). Since Drela's correlation is expressed as H32(H_2) and, unlike in

the laminar case, cannot be inverted, a close approximation has been developed.

Defining first

4

Ha2o = 1.505 + R_, (5.24)

400

nl_o = 3 + R6--:- (5.25)

cl = 0.081(R6_ - 300) °1 (5.26)

c2 = 0.0158(R_ - 300) °'°s

c3 = 1.06 +
3000

(R62 + 600) 1'5

(5.27)

(5.28)
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(5.20)

This expression, as the original, is valid for R6_ > 400. It is shown in Fig. 5-2.

The skin-friction law of Swafford is employed for attached flow,

0.3e-1.33H12

cf = (1ogR52)l.74+0.31H_2 + 0.00011 1] (5.30)

This expression does not give the correct value of skin-friction in the turbulent part

of the bubble. The modification employed is discussed in the next section together

with the remaining empirical functions.

Supplementary Functions

In order to achieve good agreement with measured bubble pressure distribu-

tions and corresponding airfoil drag coefficients, existing turbulent correlations had

to be modified and several empirical functions have been introduced. These func-

tions are specified by assigning values to certain parameters left free. While such a

formulation granted the model great flexibility, the unknown dependence of these

parameters on local flow conditions significantly limited its generality. Identification

of the correct scaling parameter for the turbulent part of the bubble, however, has

made the determination of the correct functional dependence of these parameters

both easier and less crucial. The remaining details for the calculation of the tur-

bulent part of the bubble will now be discussed and, wherever possible, supporting

arguments will be given. It should be realized, however, that final proof of the

validity of the modifications introduced will await more detailed measurements of

this region of the bubble flowfleld.
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The height of the bubble at transition is estimated by means of the expression

el

h_r - (5.31)
tan 7

wt_ere tan 7 is given by Eq. (3.18). An estimate for the spreading angle is obtained

from the experimental values reported by Birch and Eggers [1973]. In this report,

measured spreading rates are expressed in nondimensional form as function of a

velocity ratio defined as

_ ui - u2 (5.32)
ul + u2

where ul and _2 are the velocities above and below a splitter plate, respectively.

The spreading rates are normalized with respect to the maximum, which occurs at

= 1. The data are all taken in shear layers developing in zero pressure gradient,

so that their validity in the turbulent part of the bubble, where the pressure varies

very rapidly, could be doubted.

Making recourse to the strongly interacting nature of the flow, the above ob-

jection can be dispelled. Specifically, this shear layer is not developing inside a

duct with diverging wall, where the pressure gradient is imposed as a boundary

condition of the inviscid flow. In the bubble, the amount of pressure recovered is

strictly a function of the intensity of the turbulence: of the momentum transfer

across the shear layer. Therefore, treating the reattaching turbulent shear layer in

the bubble as a shear layer in zero pressure gradient with varying velocity ratios,

with the rise in pressure a by-product with negligible feed-back, seems a reasonable

approximation.

In order to obtain an estimate of the spreading rate of the shear layer from the

experimental plot given by Birch and Eggers, it should be realized that between

transition and reattachment _ varies between a value slightly greater than 1 to 1.

It falls, therefore, off the plot. Since the magnitude of the reverse flow is quite small
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compared to the local edge velocity, it is not a bad approximation to assume that

the spreading rate will be slightly larger than the maximum reported and constant.

The following function, which depends weakly on Reynolds number, has been found

satisfactory,

L

tan0 = .0975 + 2.5 x 10-sR (5.33)

This corresponds to a spreading angle varying from 5.710 at R = 100,000 to 8.390

at R = 2,000,000, measured from the parallel to the airfoil surface. Thus, the

turbulent length of the bubble is simply obtained from

hT

g2 -- tan 0 (5.34)

The bubble geometry as defined by these expressions is summarized in Fig. 5-3.

The coarseness of this approximation may seem unnecessary. In fact, it is a

well known fact that the dividing streamline is curved downstream of transition

and meets the airfoil surface at 90 ° . It is assumed here, instead, to be straight.

In addition, the spreading of the shear layer should be measured from its bottom

edge or from its center, the line of zero velocity, whereas here it is measured from

the dividing streamline. This apparently wrong resolution of the bubble geometry

is followed because the height of the dividing streamline is the only length scale

known entirely from the upstream development. The approximation works so well

because the extent of the turbulent part of the bubble is very short and because

this height is an accurate characteristic length.

Having determined _2, Eq. (5.1) is completely specified when values are as-

signed to the At. The value for A1 may be linked to the length of the transi-

tion region. In accordance with the H32-distributions measured by Horton [1967]

as well as, more recently, by Fitzgerald and Mueller [1990], A1 is such that //s2

grows steeply downstream of transition to a local maximum before dropping to the
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reattachment value. This local maximum corresponds to the sharp "knee" in the

pressure distribution which, as maintained by Russell [1978], occurs downstream

of transition and corresponds to the location where the turbulent shear layer first

touches the surface. The following function has been found necessary to give good

results for leading-edge as well as mid-chord bubbles,

A1 -- 0.5 _- e -300(h:r/c) (5.35)

The value of A2 is obtained by iterating on the intersection angle between the

undershoot and the inviscid distribution. As shown in Fig. 5-4, the calculations

between the reattachment point and this intersection are repeated with different

values of A2 until the angle satisfies the desired tolerance. As the drag prediction

has been found to be quite insensitive to this tolerance, it has been relaxed to only

1 radian to maximize computational efficiency.

The closure relations for CD and el, Eqs. (5.23) and (5.30), were originally

used unchanged. There were cases, however, when the reattaching experimental

pressure distribution could not be reproduced. This is explained as follows. Drela's

turbulent correlations were originally developed for separated turbulent boundary

layers downstream of turbulent separation. The skin-friction coefficient obtained

from these correlations in the turbulent part of the bubble is quite small in magni-

tude, equal to or less than that in the laminar part, while the dissipation coefficient

is very similar to that of an attached turbulent boundary layer. While such val-

ues make sense in the slowly recirculating, constant pressure flow downstream of

turbulent separation, they are clearly too small to reflect the effect of a turbulent

shear layer impinging on the wall, a process for which the boundary-layer approx-

imations are likely to break down. This claim is also supported by Navier-Stokes

simulations, such as the one reported by Briley and McDonald [1983], which show

a peak in negative skin friction in the turbulent part of the bubble several times its
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value before transition, as well as by the high peak in heat-transfer coefficient mea-

sured at the reattachment point of bubbles developing on turbine blades [Pucher

and GShl, 1987]. Roberts [1980] reports a measured mean value for the dissipation

coefficient of 0.035, which is twice the value originally proposed by Horton and also

given by Drela's correlations. Finally, it is not known with certainty whether or not

the reattachment process is unsteady. Unsteadiness certainly seems likely at lower

Reynolds numbers, as tile critical value is approached, or for very large values of

h7/c. The most effective way to capture such unsteadiness in a steady, integral

method is to lump its effects into a higher value for CD.

Two additional empirical functions have been introduced. The distribution of

skin-friction is specified by fitting a parabola to the transition point, the reattach-

ment point (where cI = 0 by definition), and to a preassigned value, clm_, , half-way

in between,
/ --

The higher level of dissipation is obtained by means of a multiplicative function

to Drela's values. This function rises quadratically from 1 at transition to a peak,

CDm,,, at the mean reattachment point and then exponentially decays back to i a

small distance downstream of reattachment,

(,__=__,__ 0 < ___.__=.< 1
1+(CD,,._--I)\ _2 ) ' -- _, --

f = r (5.37)
1 + (CD_o. 1)e-rk '-:_-1__ l_ /

where the decay rate is

such that

r = 15- 1000 h7-

___=.e_m> 1

(5.38)

CD = f x [CDID,'¢I= (5.38)

The decay rate downstream of reattachment increases with decreasing bubble thick-

ness at transition. This reflects the assumed slower rate of decay of the turbulence
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(or unsteadiness) downstream of thicker bubbles.

It is not known whether or not Roberts's value of CD = 0.035 is representative

of most bubbles. Thus, although the value of Com,_ could be adjusted to match

this experimental value, its general dependence on varying flow conditions cannot

be inferred from it. Given the great impact of this variable on the shear layer

development, however, it is still indispensable to obtain an estimate for at least

the order of magnitude of its variation. Rather than offering a rigorous derivation,

the following argument discusses flow variables that may be used to develop an

empirical correlation between Com,, and h_-/c.

As shown in Fig. 5-5, it is observed that, for an airfoil at a fixed _, as the

Reynolds number decreases the bubble increases in length with the (nondimen-

sional) edge velocity at transition remaining practically constant. The laminar sep-

aration point calculated with the boundary-layer equations (without interaction) is

independent of Reynolds number [Schlichting, 1979]. Since most airfoil velocity dis-

tributions are nearly linear in the main recovery region, the amount of velocity that

needs to be recovered in order to reach the inviscid distribution from a constant

value at transition increases linearly as this value moves downstream. Referring

now to Fig. 5-6, it can be seen how the main contribution to the decrease in edge

velocity comes from the dissipation coel_cient term in Eq. (5.6). Specifically, the

decrease in velocity between transition and reattachment is mostly dependent on

the area under the Co-distribution. As an aside, it can be seen from this figure

that a correct modelling of cf is not crucial. If a linear decrease in velocity with

increasing transition length is desired, therefore, an approximately linear increase

in this area is necessary. As the Reynolds number decreases, the ratio

P/(R62)s- ( 2)s Av
Vs (5.39)

which determines the separation angle, varies together with the transition length
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in such a way that the height of the bubble at transition varies almost linearly

with gl. This is shown in Fig. 5-7 for the bubble and the Reynolds numbers

shown in Fig. 5-5. Finally, as the spreading angle of the turbulent shear layer is

also nearly constant, the turbulent length of the bubble also increases linearly with

transition length. Therefore, in order for the area under the CD-distribution to

increase linearly over this length, CD,,,,_ should remain constant.

Given the very approximate nature of the argument given above, it is not

surprising that some variation in CDmo_ was found necessary. The function that

has given the best agreement is

CD,,o_ = 1 + (5.40)
c

This modification has led to a much greater control on the amount of pressure

recovery between transition and reattachment such that any experimental pressure

distribution can now be reproduced simultaneously with the correct growth in 52.

This function is shown in Fig. 5-8 together with the variations of A1 and c f,,,,,,.

Model Flowchart

Having described each part of the bubble separately, the scheme used by the

present method of predicting the development of laminar separation bubbles is now

summarized by the flow diagram shown in Fig. 5-9. Starting with the inviscid veloc-

ity distribution over an airfoil, the bubble model is invoked when laminar separation

is predicted. After removal of the Goldstein singularity, (R_2)s is determined and,

based on the inviscid velocity gradient at the laminar separation point, an initial

estimate of Gaster's parameter, P, is made. These two parameters are necessary

to estimate the angle that the separating streamline makes with the surface. The

velocity distribution in the plateau region is prescribed by means of the velocity

plateau function which depends both on P and on the matching of its slope to that
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of the inviscid velocity distribution at the laminar separation point. The separated

shear layer development can thus be calculated in the direct mode using the mo-

mentum and energy integral equations. The laminar length of the bubble extends

to the point where the amplification factor n = 9. This length times the tangent

of the separation angle gives the thickness of the bubble at transition. From this

height, knowledge of the spreading angle of the turbulent shear layer allows the

calculation of the turbulent length of the bubble. The value of the inviscid ve-

locity corresponding to this known reattachment location can be used to obtain a

new value for P, such that the laminar calculations can be iterated until P reaches

a fixed value. Upon convergence, the shear layer development in the turbulent

part of the bubble is calculated by prescribing the distribution of Ha2 and solving

the integral boundary-layer equations in the inverse mode together with turbulent

closure relations based on Drela's but modified to model better the reattachment

process. Upon the intersection of the undershoot with the inviscid distribution,

the boundary-layer development is calculated in the direct mode using the inviscid

pressure distribution to drive Drela's unmodified non-equilibrium turbulent to the

trailing edge, where the drag is obtained with the Squire-Young [1937] formula.

The equations used in the different parts of the bubble model are summarized

in the Appendix.

m
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In this chapter, tile bubble model will be tested by comparing its predictions to

available experimental measurements. These include mostly drag polars and pres-

sure distributions for several airfoils but also two sets of Laser-Doppler Velocimetry

measurements inside the bubble. The Reynolds number of these tests ranges from

-,° 000,000 down to 100,000.

NACA 66a-018 Airfoil

The NACA 663-018 airfoil was one of the first to be tested for which the effect

of the bubble on the pressure distribution could be clearly seen. Figs. 6-1 and 6-2

show a comparison between the predicted pressure distribution and boundary-layer

developments and those measured by Oault [1955]. It can be seen that away from

the bubble the inviscid pressure distribution is quite satisfactory. To the right of the

plot is a blow-up of the bubble pressure distribution. The two asterisks represent

the "viscous" separation and the reattachment points. The local inverse solution

near separation with H12 prescribed employed to remove the separation singularity

results in a rounding of the discontinuity in the velocity gradient upstream of sep-

aration and in some upstream influence of the bubble on the pressure distribution.

Although this is achieved by purely numerical means, the correct local behavior

seems well captured. The growth of the amplification factor is plotted along the

airfoil surface itself in units of percentage chord. This curve is plotted as function

of x/c rather than arc-length for consistency with the pressure distribution. Thus,

the end of the curve, at n = 9, lies a distance equal to 9% of the airfoil chord above

the airfoil's y-coordinate corresponding to the transition location. For this case, all
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of the amplification occurs after laminar separation.

Fig. 6-1(b) contains all the relevant inputs and outputs of the boundary-layer

analysis. The inviscid velocity distribution is provided for reference together with

the Reynolds number and angle of attack. The calculated bubble is drawn on

this plot. The summary of the viscous analysis as printed out by the Eppler and

Somers program is printed to the right, below the label indicating that a bubble

analysis has been performed with transition at n = 9. This includes the extents

of turbulent and separated arc lengths normalized with respect to the chord, as

well as the drag coeMcients from the upper and lower surfaces. The lift and the

total drag coefficients are printed next, and the bubble lengths on the upper and

lower surfaces come last. The Eppler boundary-layer development plot is shown

below. This plot is especially useful during the design process. Finally, all five

boundary-layer variables are plotted as functions of z/c, with the asterisk denoting

the reattachment point. The removal of the Goldstein singularity can be clearly

seen in the smooth developments through the separation point.

This figure serves to illustrate several points. Since the airfoil is symmetrical

and c_ = 0, by suppressing the bubble model on the lower surface the present

prediction using the model and Drela's turbulent boundary-layer method can be

compared with the original Eppler turbulent boundary-layer analysis starting at

the laminar separation point. With the exception of the bubble region, the two

methods give very similar results, as expected. The difference in separation point

locations with and without Goldstein's singularity can be seen from the plot of

ttl_ vs. z/c. At the bottom left of the figure Eppler's boundary-layer development

plot shows that laminar separation for this airfoil occurs at the boundary with

natural transition according to the modified transition criterion Eq. (4.5). The e n

analysis, however, indicates that n at separation is still quite small. This apparent
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inconsistency of Eppler's transition criterion may be resolved by realizing that it was

calibrated using mainly drag data. For this case, the drag of the upper and lower

surfaces is identical. Therefore, the bubble does not seem to cause any deterioration

in airfoil performance. The experimental values of momentum thickness inside the

bubble, derived from Gault's data by Roberts [1980], support this interpretation.

As shown more clearly in Fig. 6-2, a bubble may not necessarily lead to an increase

in momentum thickness greater than if transition had been assumed at laminar

separation. In fact, as will be shown later, below a certain length a mid-chord

bubble appears to reduce the airfoil drag. The growth in momentum thickness in

the laminar part of the bubble is clearly evident. The calculated transition point is

a few percent chord too far downstream. As the length of the plateau in the laminar

part shown in Fig. 6-1(a) is quite close to the experimental, transition may indeed

start before any change in the pressure is observed, as maintained by Russell [1978].

w

w

L5

NASA NLF(1)-1015 Airfoil

This airfoil was recently tested in the NASA Langley Low-Turbulence Pressure

Tunnel. Drag polars calculated from force measurements for lift, wake surveys

for drag, and also detailed pressure distribution measurements were obtained at

R = 2,000,000, 1,000,000, 700,000, and 500,000. The profile was designed for use

on a high-altitude long-endurance RPV and is therefore characterized by a large

aft-loading to achieve the high ct requirement. It was also designed to minimize the

effects of the bubbles at the design conditions of R = 2,000,000 for a high-speed

dash (bottom of the low-drag bucket) and R = 700,000 for maximum endurance

(top of low-drag bucket). The present predictions are compared with the R =

500,000 data since here the effects of the bubble are most clearly seen.

Fig. 6-3 shows the aerodynamic characteristics of this airfoil on the plot as gen-

erated by the original Eppler and Somers program. Shown is the original prediction

_=::=
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obtained by assuming transition at laminar separation, the prediction of the present

model, Drela's XFOIL results, and the experimental data from LTPT. Part of the

difference in drag prediction between the original program and the present version

is due to the different turbulent boundary-layer methods employed, as shown in Fig.

2-4. In fact, comparing Figs. 2-4 and 6-3, it can be inferred how at the top of the

bucket the bubble leads to a drag reduction over what is calculated by assuming

transition at laminar separation. In any case, the present formulation is able to re-

produce the measured data with excellent accuracy. At the upper and lower limits

of the polar, the onset of strong global interaction cannot be neglected. At these

conditions, the present lift and drag predictions are poorer. The plot also contains

the lift and moment curves as functions of c_ as well as the transition and turbulent

separation locations as functions of x/c. In actuality, although the program labels

the axis as "z/c," the independent variable is really "1 - s_,,,.b/c," a rather more

cumbersome variable. Given that there is usually very little difference between the

two variables, z/c is used for ease of presentation. Since the original version of

the program assumes transition at the laminar separation point, the difference be-

tween the transition curves for the two analyses represents the laminar length of the

bubble. It can be seen how the bubble decreases in size and eventually disappears

as the pressure distribution upstream of laminar separation becomes increasingly

adverse. This will be clearly shown in subsequent plots. Because the XFOIL tran-

sition locations are given in terms of actual :r/c, they appear to occur downstream

of transition as calculated by the present model. As will be shown below, however,

they occur upstream.

Matching the experimental drag polar does not by itself guarantee an accurate

prediction. The pressure distribution and the boundary-layer development should

also be compared to experimental data. Unfortunately, it is much more difficult
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to measure these quantities. Consequently,few data sets are available. For the

NLF(1)-1015 airfoil, the details of the bubble flowfield canbe checkedonly through

the pressuredistribution, since no boundary-layer data were taken. Figs. 6-4 to

6-6 show typical comparisonswith the measuredpressure distributions together

with the corresponding calculated developments. Fig. 6-4(a) shows the pressure

distribution corresponding to the lowest valueof ct on the polar together with the

XFOIL prediction. Two very different bubbles can be seen, one at the mid-chord

on the upper surface and the other at the leading edge on the lower surface. Both

bubbles are well approximated by the model. XFOIL gives a slightly shorter bubble

on the upper surface and a very slight perturbation on the pressure distribution on

the lower. Fig. 6-4(b) shows the boundary-layer development. It is interesting

to see how large the values of the shape factors can become inside leading-edge

bubbles. These, in any case, do not seem to contribute much to increasing the drag

of the airfoil. The shape of the sin(l/x) function can be clearly recognized in the

mid-chord bubble. The values for CD,,,,, are very similar, the greater increase in 52

of the upper-surface bubble being largely due to the longer extent of itsturbulent

part. This bubble, in fact, is much thicker at the transition point than the leading-

edge bubble. The distribution of cy seems plausible. In any case, in this region this

variable has little impact on the boundary-layer development or on the pressure

distribution.

Fig. 6-5(a) shows the pressure distribution at an angle of attack corresponding

to the middle of the airfoil polar. In an attempt at matching the pressure gradient

along the bubble, the inviscid angle of attack is one degree less than the experi-

mental. It can be seen, however, that the strong trailing-edge interaction induced

by the large aft-loading prevents the matching of the gradients on both surfaces

simultaneously. In any case, the model reproduces the measured pressure distribu-
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tion remarkably well. Both the upper and lower surface bubbles are quite long and

may be expected to be thick. In fact, as can be seen in Fig. 6-3, at this condi-

tion the drag due to the bubble is highest. The bubbles predicted by XFOIL are

a little short although the same value of n was used. At this angle of attack, n is

starting to be amplified upstream of laminar separation on the upper surface. The

boundary-layer development is shown in Fig. 6-5(b), where the step in _2 in the

turbulent part of the bubble is evident.

Fig. 6-6(a), finally, corresponds to the top of the bucket, where the upper

surface bubble is about to disappear and the lower surface contributes little to

the total drag. The short transition length in this case is believed to be a direct

consequence of the destabilizing effect of the adverse pressure distribution upstream

of separation. This is clearly shown by the distribution of n along the upper surface.

In Fig. 6-6(b), the viscous analysis summary shows how the lower-surface drag is

only a fifth of the upper-surface drag in spite of a 16%c long bubble. It is particularly

interesting to observe how the upper-surface bubble is shrinking while preserving

its proportions. This indicates that the correct scaling for the bubble has been

identified. At a slightly higher angle of attack, the transition point corresponds to

the laminar separation point. Beyond this condition, the transition point precedes

the separation point and travels upstream until the rise of the suction peak again

leads to laminar separation before transition and to the formation of a leading-edge

bubble. As far as the effects on transition are concerned, therefore, it appears that

the a destabilizing pressure distribution is entirely analogous to a rise in Reynolds

number.

Eppler E387 Airfoil

This airfoil was designed more than twenty years ago and is intended for use

on model gliders. It also was recently tested in the NASA Langley Low-Turbulence
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Pressure Tunnel [McGhee et al., 1988]. Figs. 6-7 to 6-10 show comparisons between

measurements and calculations at R = 300,000. Fig. 6-7 shows the aerodynamic

characteristics. While the original program underpredicts the drag by 10 or 20

counts, the new version is quite accurate. Also shown is the prediction with Drela's

XFOIL program. Even though XFOIL was run with n = 12, the drag is still

underpredicted. As the bubble in this case is as long, if not longer, than the exper-

imental, the small drag values can only be a consequence of a too small value for

the dissipation coef_cient in the turbulent part of the bubble.

Fig. 6-8(a) shows the pressure distribution for the lowest point on the polar.

The slight drag overprediction at low c, in Fig. 6-7 is caused by the too steep

bubble recovery that can be seen on the upper surface. Fig. 6-8(b) shows the

boundary-layer development. Fig. 6-9 shows the results at a = 1.5 °. Fig. 6-

10(a) shows a leadlng-edge bubble at a high c,. It is quite similar in shape to the

slight perturbation in the experimental pressure distribution, including the small

undershoot. Better agreement might be obtained with slightly different profiles, for

instance the Green profiles. In fact, the early transition is a consequence of the very

high values for the shape factor, shown in Fig. 6-10(b), which seem unrealistic.

Fig. 6-11 shows the drag polar at 12 = 200,000. Again, the prediction is

excellent. Figs. 6-12-6-14 are some characteristic analyses. Fig. 6-15 is a limiting

case, very near the critical Reynolds number. Below /_ = 100,000, the model

breaks down due to a transition length which extends beyond the trailing edge.

At this Reynolds number the prediction is not as good, as shown in Figs. 6-16

to 6-20. The pressure distribution shown in Fig. 6-16(a) highlights some of the

limitations of the model. The error due to the envelope method increases as the

Reynolds number decreases. Thus it could explain the disagreement between the

measured and predicted transition predictions for the upper surface bubble. The
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lower surface bubble is of a very difficult type for the model. In fact, the velocity

distribution along the bubble deviates significantly from a straight line, such that

the height at the transition point is probably overestimated by Eq. (5.31). As a

consequence, the predicted turbulent length is also too large leading to a too great

pressure recovery. A higher-order dependence of hT on the curvature of the velocity

distribution should be developed. As discussed by Gaster, such deviation from a

linear recovery may be well represented by a P2-term in the correlations. As the

pressure distribution upstream of laminar separation becomes increasingly adverse,

as shown in Figs. 6-17(a)-6-20(a), the predicted transition point moves downstream

relative to the experimental. This is consistent with the conclusions of Chapter 4

about Drela's en method. In Fig. 6-18(a), the effect of the interaction on the

growth of n can be clearly seen in the XFOIL analysis. At this Reynolds number,

in fact, the bubble is so large that its effect on the pressure distribution upstream

of laminar separation cannot be neglected anymore. The steeper growth of n that

results is responsible for the early transition. This effect is probably independent

of the en method employed such that a correlation between n and R should be

developed for use with interactive methods. In Figs. 6-16(b)-6-20(b) the details

of the boundary-layer development inside the bubble are most clearly evident. To

conclude the comparisons, the last two airfoils to be discussed, Figs. 6-21 and 6-

22, were tested for pressure distributions and boundary-layer developments using

Laser-Doppler Velocimeters.

NACA 65-213 Airfoil

An NACA 65-213 airfoil was tested by Hoheisel et al. [1984] at DLR, Ger-

many. Pressure coefficients and boundary-layer developments obtained with a

Laser-Doppler Velocimcter are given for the upper surface at zero angle of attack

and R = 240,000. Fig. 6-21(a) shows the airfoil and the pressure distribution. A1-
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though the inviscid analysis is performed at one degree less than the experimental,

the pressures could not be matched since the coordinates used were not the exper-

imental ones and, moreover, were generated by scaling those of an NACA 65-210

airfoil. As explained in Abbot and Von Doenhoff [1959], this is an approximate

procedure which can be used in place of the exact method of Theodorsen if the

change in thickness is small. Finally, the turbulence intensity of the wind tunnel

used is Tu_ = 0.2%. This is to be contrasted with that of LTPT, which is less than

0.02%. Both the shape of the bubble distribution and the transition location appear

to be affected by such a high freestream turbulence intensity. In fact, the bubble

recovers a significant amount of pressure in the laminar part, followed by a fairly

gradual steepening into the fully turbulent recovery. As shown in Fig. 6-21(b), the

experimental transition point occurs about 5%c upstream of the predicted. In any

case, the shape factor and momentum thickness developments are reproduced very

well.

Wortmann FX 63-137 Airfoil

The last of the comparisons is a prediction of the pressure distribution and

boundary-layer development over a Wortmann FX 63-137 airfoil at R = 100,000.

The data were taken by Brendel and Mueller [1988] with an LDV at o_ = 7 °.

Fig. 6-22(a) shows the pressure distribution and Fig. 6-22(b) the upper surface

boundary-layer development. Although the calculated trailing-edge value of mo-

mentum thickness is 0.028, the plot is cut off as shown in order to view more clearly

the bubble region. The comparison is very good.
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Summary and Conclusions

The correct scaling parameters for the bubble have been determined: P,

(R_2)s, and hT-/c. The generality of the model relies on having understood and

correctly approximated the dominant physical processes in the bubble flowfield.

Having identified what the bubble depends on, parameters characteristic of this

particular problem have been utilized to construct an algorithm that conforms to

the flow development itself. Thus, the strong interaction leading to the pressure

plateau in the laminar part is well represented by DU(P), a relationship that re-

flects the dependent role of the pressure recovery. The e" method coupled with

Wortmann's correlation for the separation angle as a function of P and (R6_)s al-

lows the transition location and the height of the bubble at transition to be found.

hT/c, in turn, determines the length of the turbulent part such that even a rough

estimate of the turbulence intensity in the reattachment region allows an accurate

prediction of the pressure distribution and the momentum thickness growth.

The feasibility of a semi-empirical approach has finally been established. After

fifty years of unsuccessful attempts at developing a general semi-empirical bubble

model, the identification of the correct scaling parameters for the bubble has finally

made such an approach possible. This has brought two main advantages: a method

more efficient than any interactive boundary-layer of finite-difference algorithm and

a deeper understanding of the bubble flowfield without which, in fact, the method

could not have been developed.

A general, accurate, and computationally efficient laminar separation bubble
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model has been developed. Although very simple, the model is able to reproduce

the effects of vastly different bubbles over the whole Reynolds number range in

which bubbles form. On a VAXstation 3100, the original version of the Eppler and

Somers program takes approximately ten seconds to generate a drag polar, which

typically is defined by fourteen angles of attack. The program with the bubble

model takes approximately one minute for the same analysis. Drela's XFOIL takes

approximately thirty minutes, partly because smaller steps in angle of attack must

be taken to ensure convergence.

w

w

,,.,..

m

Suggestions for Future \Vork

The simplicity of the model brings a few drawbacks. While its response to

large changes in the controlling flow conditions is correct to lowest order, its sen-

sitivity to slight variations in pressure distribution is limited. More importantly,

its performance near limiting conditions such as high angles of attack, very low

Reynolds numbers, or very unusual pressure distributions is not reliable. These

deficiencies can be traced to the "stiffness" of the model: by effectively integrating

parts of the flowfield in an approximate way, the pointwise flexibility of the original

governing equations is lost. Whereas it appears that the bubble flow field itself has

been properly "integrated," its effect on the airfoil pressure distribution has not.

An interactive method should therefore be incorporated in the Eppler and Somers

program in order to be able to analyze those limiting cases where the present model

is likely to fail.

The principles of conservation of mechanical energy and momentum that are

invoked to justify the pressure plateau in the laminar part might be used to deduce

what the value of G should be in the Green profiles. Since the value of skin friction

appears to have such a small impact on the bubble development, the correlations

based on these profiles may lead to a more accurate calculation of the separated
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laminar shearlayer.

Another concern for future work on the improvement of the model is the

transition prediction method. The method of Stock and Degenhart should be

implemented in place of Drela's but its accuracy should nonetheless be tested

against "exact" stability analysesof boundary-layer developments calculated by

finite-difference methods. The influence of the interaction on the growth of n de-

serves particular attention. It appears from the XFOIL analyses that the correct

transition location can be matched by a value of r_ that increases with decreasing

Reynolds number. It should therefore be possible to develop an empirical function

n(R) that reflects this trend.

Finally, very detailed measurements of the reattachment process are necessary

to understand it better and to provide a better estimate for CD in the turbulent

part of the bubble. Specifically, the mean flow and the turbulent stresses should be

measured in order to deduce the actual distribution of dissipation coefficient in the

turbulent part of the bubble.

i
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In this appendix, all the equations used in the present version of the bubble

model are summarized. This will facilitate both the understanding and the repro-

duction of the model.

Laminar Boundary-Layer

The inviscid velocity distribution is used to drive the laminar boundary-layer

development, which is found by integrating the following system of equations.

-? ?-
=T-

_:::z

Governing Equations:

d62 _ C_L_ (H12 + 2)62 dU
ds 2 U ds

(A.1)

Closure correlations:

3 63 dUd63 = CD -- (A.2)
ds U ds

H32 >_ 1.7258

Hz2 < 1.7258
(25.71578574Hz2 - 89.58214201)H32

-t-79.87084472,

H12 = _/Ha2 - 1.515095[(-227.18220H32

+724.55916)H32 - 583.60182],

H32 >_ 1.7258

Ha2 < 1.7258
(2.2216872229H32 - 4.226252829)Hz2

cf +1.3723907030,

R6_ -_- = [(-0.03172850655H12 + 0.3915405523)H12

- 1.686094798]H_2 + 2.512588652,

R62CD = (6.8377961H32 - 20.521103)H32 + 15.707952

H32 = 1.515095

Laminar Separation:

(A.3)

(A.4)

(A.5)

(A.6)
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Laminar Part of the Bubble

The development of the shear layer in the laminar part of the bubble is cal-

culated by integrating Eqs. (A.1) and (A.2) along with the following expressions.

The removal of the Goldstein singularity at laminar separation is discussed at the

end of Chapter 3.

Scparation angle:

where

64P

tan 7 = - (R_ 2)s (A. 7)

(R6_)s = R
Us (6_)s
Uoo c

(A.8)

Laminar pressure recovery:

U
-1-DU

Us

[(_]2 A(U/Uoo) (A.9)p = R A(#_)

where

DU =

Closure correlations:

{1_o_[1___._]}o__ _._0,

H12 _-

0.0610 + 0.3048P + 0.5072P 2 -P < .3 (A.11)
0.0152 -P > .3

H32 - 1.194068
1

1104008 2 j 644] 0.08

_ "/-0.067+ 0.01977(,.H7_7),,_ rz H12 < 7.4
_.4 H12 > 7.4R62_- -0.067 + 0.022 1 H1_-6 ' --

CD

R, 2 _ - 0.207 - 0.003(H1_ - 4) 2

(A.12)

(A.13)

(A.14)
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Amplification factor:

8 dn H re(H12) + 1 _(H12) ds

2 ,5_(s)
(A.15)

where

= 0.01[{2.4H12 - 3.7

+ 2.5 tanh[1.5(g12 - 3.1)]} 2 +0.25]½

e(H12) =
6.54H12 - 14.07

H_2

0.058(H12 - 4) 2 1

re(H,2) = (H,2 - 1) - 0.06S7

so is defined as the location where R82 = R62o, where

r ,,_=1_ 0.489] tanh [/./,._E 1 12.9]l°glO[R*:°(H12)] = [HU m 1

3.295
+ + 0.440

H12 - 1

Laminar length of the bubble:

gl@n = 9

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

Bubble height at transition:

E1

hT--
tan 7

Turbulent Part of the Bubble

Spreading angle of turbulent shear layer:

tan8 = .0975 + 2.5 x 10-8R

(A.21)

(A.22)
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tan 8

147

(A.23)

w

w

Sh.ape factor distribution:

where

H32 = H32 - (H32)Ta
+Ai [(H32)7- - (H32)_1 - 1

3rr - sin-l(1/A1 - 1)

s - s_)/e2 s _<s_= [(s- sr)/e_ - 1]SF + 1 s > s_
SF = X/'-_I/A2

A1 = 0.5 + e -300(h7/c)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

and A2 is iterated upon until the undershoot merges with the inviscid velocity

distribution.

The above shape factor distribution is used to drive the integral boundary-layer

equations in the inverse mode.

Governing equations:

- (cs12)H32 - Co +hdH_] u
as j _2H32(H12- 1) (A.31)

dC,- x x

C_- _ - 4.2(C_, - C¢ ) (A.33)

[_ dH32 ] H12 + 2d62 _ 3(cy/2)H32 +CD--_52 (A.32)
ds [ H12+2 ds J H32(H12 -1)
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where

Closure correlations:

where

30.015H32

-- H12

1.72 )6 = 62 3.15 + H12 - 1 + 61

CD = f x [CD]D,-el.

f = { 1 + (CD,.n.,,
1 _- (CDm..

r = 15 - 1000 hT"
E

[CD]O_a = ciU_. p + 2C_(1 - U_.p)

_ /_2 4

\l_ ],

., -_(_-qa-_--1)

0 < _-=_- < 1

•--v__:> 1
t2
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(A.34)

(A.35)

(A.36)

(A.37)

(A.3S)

(A.39)

(A.40)

(A.41)

where

Ht2o

1 • rg_2-B.2o 1 r_v '
H,_ = *L °, J

r.r -- r Ha2-H32_ l
22120 -I- [ c2 J

A_
¢8

4
H32o = 1.505 + --

R62

400

H12o = 3 + R6,

cl = 0.081(R82 - 300) °"1

c2 = 0.0158(R6_ - 300) °'°s

3000
c3 = 1.06 +

(R6, + 600)_-5

cf>O

cf<O

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)
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c f,,,,, = -V0.0002"c (A.48)

The cf distribution is obtained by fitting a parabola through cyr, cf,_,, and ci = 0

at g2-

w

Turbulent Boundary Layer

The development of the turbulent boundary layer downstream of the intersec-

tion of the undershoot with the inviscid velocity distribution is calculated in the

direct mode by prescribing the inviscid velocity distribution to drive Eqs. (A.1),

(A.2)' and (A.33). This system of equations is complemented by closure correlations

(A.34), (A.35), and (A.40)-(A.47). The skin-friction coefficient is obtained from

0"3e-l'33H12 [tanh (4 0.-_5)1] (A.49)cf = (log R$2) 1'74+°'31H12 + 0.00011

Turbulent separation:

400
H32 = 1.505 + -- (A.50)

R62

w

Squire-Young formula:

Drag Calculation

¢_2T_ _ UTE _ 2"5-t-0"5H12TE

Cd-- c \--_,] (A.51)
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